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CHAPTER 1  INTRODUCTION 

 

1.1 ABOUT THIS MANUAL 

This manual is intended as a general purpose user’s guide for Q-Chem, a modern 
electronic structure program. The manual contains background information that describes 
Q-Chem methods and user-selected parameters. It is assumed that the user has some 
familiarity with the UNIX environment, an ASCII f ile editor and a basic understanding 
of quantum chemistry. 

The manual is divided into 11 chapters and 3 appendices which are briefly summarized 
below. After installi ng Q-Chem and making necessary adjustments to your user account, 
it is recommended that particular attention be given to Chapters Three and Four. The 
latter chapter has been formatted so that advanced users can quickly find the information 
they require, while supplying new users with a moderate level of important background 
information. This format has been maintained throughout the manual, and every attempt 
has been made to guide the user forward and backward to other relevant information so 
that a logical progression through this manual, while recommended, is not necessary. 

1.2 CHAPTER SUMMARIES 

Chapter 1: General overview of the Q-Chem program, its features and capabiliti es, 
the people behind it and contact information 

Chapter 2: Procedures to install , test and run Q-Chem on your machine 
Chapter 3: Basic attributes of the Q-Chem command line input. 
Chapter 4: Running self-consistent field ground state calculations. 
Chapter 5: Running wavefunction-based correlation methods for ground states. 
Chapter 6: Running excited state calculations 
Chapter 7: Using Q-Chem’s built -in basis sets and running user-defined basis sets 
Chapter 8: Using Q-Chem’s effective core potential capabiliti es 
Chapter 9: Options available for determining potential surface criti cal points such as 

transition states and local minima 
Chapter 10: Techniques available for computing molecular properties and performing 

wavefunction analysis 
Chapter 11: Important customization options available to enhance user flexibilit y 
Appendix A: OPTIMIZE package used in Q-Chem for determining Molecular 

Geometry Critical Points 
Appendix B: Q-Chem’s AOINTS library, which contains some of the fastest two-

electron integral codes currently available 
Appendix C: $rem variable reference 
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1.3 CONTACT INFORMATION 

1.3.1 GENERAL INQUIRIES AND SALES 

For general information regarding broad aspects and features of the Q-Chem program, 
see Q-Chem’s WWW home page (http://www.q-chem.com). Alternatively, contact 
Q-Chem, Inc. headquarters: 
 
 Q-Chem, Inc. 
 Four Triangle Lane 
 Suite 160 
 Export, PA 15632-9255 
 Telephone:  (724) 325-9969 
 Fax:   (724) 325-9560 
 email:   sales@q-chem.com 
    support@q-chem.com 
      info@q-chem.com 
 

1.3.2 CUSTOMER SUPPORT 

Full customer support is promptly provided though telephone or email for those 
customers who have purchased Q-Chem’s maintenance contract. The maintenance 
contract offers free customer support and discounts on future releases and updates. For 
details of the maintenance contract see Q-Chem’s home page (http://www.q-chem.com). 

1.4 Q-CHEM, INC. 

Q-Chem, Inc. is based in Export, Pennsylvania and was founded in 1993.  Q-Chem’s 
scientific contributors and board members includes leading quantum chemistry software 
developers - Martin Head-Gordon (Berkeley), Peter Gill (Cambridge), Fritz Schaefer 
(Georgia) and John Pople (Northwestern).  The close coupling between leading 
university research groups, and Q-Chem Inc. ensures that the methods and algorithms 
available in Q-Chem are state-of-the-art. 

In order to create this technology, the founders of Q-Chem, Inc. built entirely new 
methodologies from the ground up, using the latest algorithms and modern programming 
techniques. Since 1993, well over 50 man-years have been devoted to the development of 
the Q-Chem program.  The author li st of the program shows the full li st of contributors 
to the current version, consisting of some 35 people. 
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1.5 COMPANY M ISSION 

The mission of Q-Chem, Inc. is to develop, distribute and support innovative quantum 
chemistry software for industrial, government and academic researchers in the chemical, 
petrochemical, biochemical, pharmaceutical and material sciences. 

1.6 Q-CHEM FEATURES 

Quantum chemistry methods have proven invaluable for studying chemical and physical 
properties of molecules. The Q-Chem system brings together a variety of advanced 
computational methods and tools in an integrated ab initio software package, greatly 
improving the speed and accuracy of calculations being performed. In addition, Q-Chem 
will accommodate far large molecular structures than previously possible and with no 
loss in accuracy, thereby bringing the power of quantum chemistry to criti cal research 
projects for which this tool was previously unavailable. 

1.6.1 WHAT’S NEW IN Q-CHEM 2.0? 

In a word--- lots!!  We are very proud of the many new features that this new release of 
Q-Chem contains.  The main ones are listed below, but they are by no means all , and you 
as a user should also notice significant improvements in performance and robustness over 
earlier versions.  So, without further ado, here is a li st of the main new goodies, and who 
is primarily to thank for them. 

• New algorithms for large-molecule density functional calculations 
◊ New J engine and J force engine by Yihan Shao (Berkeley) 
◊ LinK for exchange energies and forces by Christian Ochsenfeld (Mainz) 

• Effective core potentials for energies and gradients (Chapter 8) 
◊ Highly eff icient PRISM-based algorithms to evaluate ECP matrix elements 
◊ Wide range of ECP’s and ECP basis sets built -in. 
◊ By Ross Adamson and Peter Gill (Cambridge and Nottingham) 

• Analytical second derivatives for density functional theory calculations 
◊ Substantially more eff icient than previous finite-differences of gradients 
◊ By Jing Kong (Q-Chem) 

• Local second order Møller-Plesset (MP2) methods 
◊ Accurate and eff icient TRIM method for energy evaluation 
◊ By Mike Lee and Martin Head-Gordon (Berkeley) 

• Standard high level electron correlation methods (Chapter 5) 
◊ QCISD, QCISD(T), CCSD, CCSD(T), MP3, MP4 
◊ By Steve Gwaltney, Anna Krylov, David Sherrill and Ed Byrd (Berkeley) 

• New high level electron correlation methods (Chapter 8, Chapter 9) 
◊ Optimized orbital coupled cluster (Anna Krylov, David Sherrill , Ed Byrd) 
◊ CCSD(2) and OD(2) methods (Steve Gwaltney) 
◊ Excited state coupled cluster methods for OD and VOD (Anna Krylov) 
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• Time-dependent density functional theory for excited states 
◊ Computationally inexpensive and often much more accurate than CIS 
◊ Developed by So Hirata and Cherri Hsu (Berkeley) 

• Langevin dipoles solvation model 
◊ A leading continuum solvation treatment 
◊ Developed by Jan Florian and Arieh Warshel (USC) 
 

1.6.2 SUMMARY OF  METHODS AND  FEATURES 

• Linear scaling methods for Hartree-Fock and DFT calculations 
◊ CFMM for Coulomb interactions (energies and gradients) 
◊ LinK for exchange interactions (energies and gradients) 
◊ Linear scaling exchange-correlation quadrature 

• Local, Gradient-Corrected and Hybrid DFT functionals 
◊ Slater, Becke, GGA91 and Gill ‘96 exchange functionals 
◊ VWN, PZ81, Wigner, Perdew86, LYP and GGA91 correlation functionals 
◊ EDF1 exchange-correlation functional 
◊ B3LYP, B3P and user-definable hybrids 
◊ Analytical gradients and analytical frequencies 

• Post-Hartree-Fock wavefunction-based electron correlation methods 
◊ Eff icient semidirect MP2 energies and gradients 
◊ Local MP2 for energies using the TRIM and DIM models 
◊ MP3, MP4, QCISD, CCSD energies 
◊ OD and QCCD energies and analytical gradients 
◊ QCISD(T), CCSD(T) and OD(T) energies 
◊ CCSD(2) and OD(2) energies 
◊ active space coupled cluster methods: VOD, VQCCD, VOD(2) 

• Extensive excited state capabiliti es 
◊ CIS energies, analytical gradients and analytical frequencies 
◊ CIS(D) energies 
◊ Time-dependent density functional theory energies (TDDFT) 
◊ Coupled cluster excited state energies (OD, and VOD) 

• Evaluation and visualization of molecular properties 
◊ Langevin dipoles solvation model 
◊ Evaluate densities, electrostatic potentials, orbitals over cubes for plotting 
◊ Natural Bond Orbital (NBO) analysis 
◊ Attachment-detachment densities for excited states via CIS, TDDFT 
◊ Vibrational analysis after evaluation of the nuclear coordinate Hessian 

• High performance geometry and transition structure optimization 
◊ Optimizes in Cartesian, Z-matrix or delocalized internal coordinates 
◊ Impose bond angle, dihedral angle (torsion) or out-of-plane bend constraints 
◊ Freezes atoms in Cartesian coordinates 
◊ Constraints do not need to be satisfied in the starting structure 
◊ Geometry optimization in the presence of f ixed point charges 
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1.7  HIGHLIGHTED FEATURES 

Developed by Q-Chem, Inc. and its collaborators, fundamental features include COLD 
PRISM, CFMM, CIS(D), OPTIMIZE packages. The features, which are highlighted 
below, are elaborated in later relevant sections. 

1.7.1 THEORETICAL ADVANCEMENTS 

COLD PRISM 
The COLD PRISM is the latest in a number of high performance two-electron integral 
algorithms developed by Peter Gill and his collaborators at Massey University and the 
University of Cambridge. The development of COLD PRISM began with the realization 
that all methods for computing two-electron integral matrix elements involve four steps 
(represented by the COLD acronym), namely - contraction (C), operator (O), momentum 
(L) and density (D). This has culminated in the unification and augmentation of the 
previous PRISM and J engine methodologies into a generalised scheme, for the 
construction of two-electron matrix elements from shell -pair data.  New in version 2.0 
are extensions to the PRISM scheme to permit highly eff icient evaluation of the matrix 
elements associated with effective core potentials. 

Continuous Fast Multipole Method (CFMM) 
One of the main driving forces in the evolution of Q-Chem is the implementation of the 
Continuous Fast Multipole Method (CFMM) developed by Chris White at the University 
of Cali fornia at Berkeley. This enables Q-Chem to calculate the electronic Coulomb 
interactions (the rate-limiti ng step in large DFT calculations) in less time than other 
programs, and the time saved actually increases as the molecule becomes larger.  New in 
version 2.0 is an improved treatment of the short-range interactions, developed by Yihan 
Shao at Berkeley, that significantly speeds up energy evaluation and dramatically speeds 
up force evaluation, with no loss of accuracy. 

Local MP2 
Q-Chem’s local MP2 methods are unique, and were developed by Michael Lee, Paul 
Maslen and Martin Head-Gordon at Berkeley.  Unlike other local correlation methods 
these satisfy all the properties of a theoretical model chemistry, and yield strictly 
continuous potential energy surfaces.  Local MP2 reduces disk requirements compared to 
conventional MP2 by a factor proportional to the number of atoms in the molecule, and 
permits calculations in the 1000 to 1500 basis function range on workstations. 

High Level Coupled Cluster Methods  
Q-Chem’s coupled cluster capabiliti es have been developed new from the ground up by 
Anna Krylov (USC) and David Sherrill (Georgia Tech) while they were postdocs in the 
research group of Martin Head-Gordon at Berkeley.  In addition to conventional methods 
such as QCISD, CCSD, CCSD(T), Q-Chem also contains novel optimized orbital 
coupled cluster methods developed by Krylov, Sherrill and Ed Byrd at Berkeley, that can 
be performed in active spaces.  Additionally new high level methods developed bv Steve 
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Gwaltney in Head-Gordon’s group are available exclusively in Q-Chem.  These methods, 
denoted as CCSD(2) and OD(2), are superior to CCSD(T) and QCISD(T) for problems 
involving bond-breaking and radicals. 

CHEMSOL  
The Q-Chem program incorporates the CHEMSOL package developed by Jan Florian 
and Arieh Warshel at the University of Southern Cali fornia to treat solvation by the 
method of Langevin dipoles.  This method has already been proven in many applications 
studies, and contains important physical features such as dielectric saturation that are not 
accurately captured by other commonly used continuum solvation models. 

OPTIMIZE 
The Q-Chem program incorporates the latest version of Jon Baker' s OPTIMIZE package, 
containing a suite of state-of-the-art algorithms for geometry optimization including the 
extremely eff icient delocalized internal coordinates. Dr. Baker wrote the optimization 
algorithms in the Spartan package and the optimization code in the Biosym-distributed 
versions of DMol, Turbomole and Zindo. 

1.7.2 GRAPHICAL USER INTERFACE (GUI) 

Linux Spartan 
Under development jointly between Wavefunction (www.wavefun.com) and Q-Chem for 
release early in 2001, Linux Spartan will bring the ease of use of Wavefunction’s 
graphical user interface together with the full version of Q-Chem as a back-end for 
electronic structure calculations in a single integrated package. 
 

1.8 CURRENT DEVELOPMENT AND FUTURE RELEASES 

All details of functionality currently under development, information relating to future 
releases, and patch information are regularly updated on the Q-Chem web page 
(http://www.q-chem.com). Users are referred to this page for updates on developments, 
release information and further information on ordering and licenses. For any additional 
information, please contact Q-Chem, Inc. headquarters. 
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1.9 CITING Q-CHEM 

The official Q-Chem citation for this release is a journal article that has been written 
describing the main technical features of the program.  The full citation for this article is: 

“Q-Chem 2.0: A high-performance ab initio electronic structure program”, 
 

J. Kong, C. A. White, A. I. Krylov, C. D. Sherrill, R. D. Adamson, 

T. R. Furlani, M. S. Lee, A. M. Lee, S. R. Gwaltney, T. R. Adams, 

C. Ochsenfeld, A. T. B. Gilbert, G. S. Kedziora, V. A. Rassolov, 

D. R. Maurice, N. Nair, Y. Shao, N. A. Besley, P. E. Maslen,  

J. P. Dombroski, H. Daschel, W. Zhang, P. P. Korambath, 

J. Baker, E. F. C. Byrd, T. Van Voorhis, M. Oumi, S. Hirata,  

C.-P. Hsu, N. Ishikawa, J. Florian, A. Warshel, B. G. Johnson,  

P. M. W. Gill, M. Head-Gordon, and J. A. Pople, 

J. Comput. Chem. (2000) 21, 1532-1548. 
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CHAPTER 2 INSTALLATION 

 

2.1 Q-CHEM INSTALLATION REQUIREMENTS 

2.1.1 EXECUTION ENVIRONMENT 

Q-Chem is shipped as a collection of excutables and scripts for the computer systems you 
will run Q-Chem on.  No compilation is needed.  Once the package is installed, it is 
ready to run.  The installation instructions are provided on the CD cover. 

The software required to run Q-Chem on your platform is minimal and includes: 
• a suitable operating system 
• runtime libraries (usually provided with your operating system) 
• perl, version 5. 
 

2.1.2 HARDWARE PLATFORMS AND OPERATING SYSTEMS 

Q-Chem will run on a range of UNIX-based computer systems, ranging from Pentium 
and Athlon based PCs running Linux, to high performance workstations and servers 
running other versions of UNIX.  For the availabilit y of a specific platform/operating 
system, please check Q-Chem web page at http://www.q-
chem.com/products/platforms.html. 
 

2.1.3 MEMORY AND HARD DISK 

Memory 
Q-Chem, Inc. has endeavored to minimize memory requirements and maximize the 
eff iciency of its use. Still t he larger the structure or the higher the level of theory, the 
more random access memory (RAM) is needed.  Although Q-Chem can be run with 16 
MB RAM,  we recommend 64 MB as a minimum.  Q-Chem also offers the abilit y for 
user control of important memory intensive aspects of the program, an important 
consideration for non-batch constrained multi -user systems.  In general, the more 
memory your system has, the larger the calculations that become feasible. 

Disk 
The Q-Chem executables, shell scripts, auxili ary files, samples and documentation 
require between 360 to 400 MB of disk space, depending on the platform.  The default 
Q-Chem output, which is printed to the designated output file, is usually only a few 
KB’s. This will be exceeded, of course, in diff icult geometry optimizations, and in cases 
where users invoke non-default print options.  In order to maximize the capabiliti es of 
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your copy of Q-Chem, additional disk space is required for scratch files created during 
execution; these are normally automatically deleted on termination of a job.  The amount 
of disk space required for scratch files depends criti cally on the type of job, the size of 
the molecule and the basis set chosen.  Q-Chem uses direct methods for Hartree-Fock and 
density functional theory calculations, which do not require large amount of scratch disk 
space.  Wave function-based correlation methods, such as MP2 and coupled cluster 
theory require substantial amounts of temporary (scratch) disk storage, and the faster the 
access speeds, the better these jobs will perform.  With the low cost of disk drives, it is 
feasible to have between 10 and 100GB of scratch space available relatively 
inexpensively, as a dedicated file system for these large temporary job files.   The more 
you have available, the larger the jobs that will be feasible, and, in the case of some jobs 
like MP2, the jobs will also run faster as two-electron integrals are computed less often. 

2.2 INSTALLING Q-CHEM 

Users are referred to the guide on the CD cover for installation instructions pertinent to 
the release and platform. Should any diff iculties arise during installation, please refer to 
the Q-Chem website (http://www.q-chem.com, FAQ’s, telephone and facsimile numbers) 
or directly contact Q-Chem customer support (email: support@q-chem.com) for 
assistance. 

2.3 LICENSE REQUIREMENTS 

In order to run Q-Chem you must obtain the necessary encrypted license password file. 
The license consists of two files. Place these files, filenames qchem.license.dat and 
qchem.aux, in the $QCAUX/license directory. 

Do not alter these files unless directed by Q-Chem, Inc. 

2.4 ENVIRONMENT VARIABLES 

Q-Chem requires three shell environment variables in order to run calculations. 

QC defines the location of the Q-Chem directory structure. The 
qchem.install shell script determines this automatically. 

 
QCAUX defines the location of the auxili ary information required by Q-Chem, 

which includes the license required to run Q-Chem. This defaults to 
$QC/aux. The user may redefine this location. 

 
QCSCRATCH defines the directory in which all scratch files will be placed during a 

run. The directory and the files in it will be removed by the script 
qchem at the end of the job, unless the job is terminated abnormally or 
is invoked with three arguments.  Note that many of the files can be 
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quite large, and it should be ensured that suff icient disk space is 
available. The QCSCRATCH directory should be periodically checked 
for scratch files remaining from abnormally terminated jobs. 
QCSCRATCH defaults to the working directory. 

 

2.5 USER ACCOUNT ADJUSTMENTS 

In order for individual users to run Q-Chem, their user environment must be modified as 
follows: 
• User file access permissions must be set so that the user can read, write and execute 

the necessary Q-Chem files. It may be advantageous to create a Q-Chem User’s 
UNIX group on your machine and recursively change the group ownership of the 
Q-Chem files to that of the new group. 

• A few lines need to be added to user login files or to the system default login files. 
The Q-Chem environment variables need to be defined and the Q-Chem set up file 
needs to be initiated prior to use of Q-Chem (once, on login). 

 

2.5.1 EXAMPLE LOGIN FILE MODIFICATIONS 

For users using the csh shell (or equivalent), add the following lines to their home 
directory .cshrc file: 

#*****  Q - Chem Configuration Begin *****  
setenv QC directory_name  
setenv QCAUX directory_name  
setenv QCSCRATCH directory_name  
if ( - e ${QC}/bin/qchem.setup) source ${QC}/bin/qchem.setup  
unset noclobber  
#*****  Q - Chem Configuration End *****  
 

For users using the Bourne shell (or equivalent), add the following lines to their home 
directory .profile file: 

 
#*****  Q - Chem Configuration Begin *****  
QC=directory_name; export QC  
QCAUX=directory_name; export QCAUX  
QCSCRATCH=directory_name; export QCSCRATCH  
noclobber=“”  
if [ - e ${QC}/bin/qchem.setup.sh ] ; then  
   . ${QC}/bin/qchem.setup.sh  
fi  
#*****  Q - Chem Configuration End *****  
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Alternatively, these lines can be added to system wide profile or cshrc files or their 
equivalents. 

2.6 THE QCHEM.SETUP FILE 

When sourced on login from the .cshrc (or .profile, or equivalent), the qchem.setup(.sh) 
file makes a number of changes to the operating environment to enable the user to fully 
exploit Q-Chem capabiliti es, without adversely affecting any other aspect of the login 
session. The file: 
• defines a number of environment variables used by various parts of the Q-Chem 

program 
• sets the default directory for QCAUX, if not already defined 
• adjusts the PATH environment variable so that the user can access Q-Chem’s 

executables from the users working directory 
 

2.7 RUNNING Q-CHEM 

Once installation is complete and any necessary adjustments are made to the user 
account, the user is now able to run Q-Chem. There are two ways to invoke Q-Chem: 
• qchem command line shell script (if you have purchased Q-Chem as a stand-along 

package.  The simple format for command line execution is given below.  The 
remainder of this manual covers the creation of input files in detail . 

• Via a supported Graphical User Interface.  If you find the creation of text-based 
input, and examination of the text output tedious and diff icult (which, frankly, it can 
be), then Q-Chem can be invoked transparently through Wavefunction’s Spartan user 
interface on some platforms.  Contact Wavefunction (www.wavefun.com) or Q-
Chem for full details of current availabilit y. 

 
Using the Q-Chem command line shell script, qchem, is straightforward provided 
Q-Chem has been correctly installed on your machine and the necessary environment 
variables have been set in .cshrc or .profile (or equivalent) login files. If done correctly, 
necessary changes will have been made to the PATH variable automatically on login so 
that Q-Chem can be invoked from your working directory. The qchem shell script can be 
used in either of the following ways: 
 

qchem infile outfile  
 
qchem infile outfile savename  
 
qchem –save infile outfile savename  
 

where infile is the name of a suitably formatted Q-Chem input file (detailed in Chapter 3, 
and the remainder of this manual), and the outfile is the name of the file to which 
Q-Chem will place the job output information. 
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Note: If the outfile already exists in the working directory, it will be overwritten. 

The use of the savename command line variable allows the saving of a few key scratch 
files between runs and is necessary when instructing Q-Chem to read information from 
previous jobs. Otherwise Q-Chem deletes all the scratch files at the end of a run. The 
saved files are in $QCSCRATCH/savename/, and include files with the current molecular 
geometry, the current molecular orbitals and density matrix, the current force constants 
(if available), etc. 

The –save option in conjunction with savename means that all temporary files are saved, 
rather than just the few essential files described above.  Normally this is not required. 
 
The name of the input parameters infile, outfile and save can be chosen at the discretion 
of the user (usual UNIX file and directory name restrictions apply). It maybe helpful to 
use the same jobname for infile and outfile, but with varying suff ixes. For example: 
 
 localhost-1> qchem water.in water.out & 
 
invokes Q-Chem where the input is taken from water.in and the output is placed into 
water.out. The & places the job into the background so that you may continue to work in 
the current shell . 

 
 localhost-2> qchem water.com water.log water & 
 
invokes Q-Chem where the input is assumed to reside in water.com, the output is placed 
into water.log and the key scratch files are saved in a directory $QCSCRATCH/water/. 

2.8 TESTING AND EXPLORING Q-CHEM 

Q-Chem is shipped with a small number of test jobs, which are situated in the 
$QC/samples directory. If you wish to test your version of Q-Chem, run the test jobs in 
the samples directory and compare the output files with the reference files (suff ixed .ref) 
of the same name. 

These test jobs are not an exhaustive quality control test (a small subset of the test suite 
used at Q-Chem, Inc.), but they should all run correctly on your platform. However, if 
any fault is identified in these or any output files created by your version, do not hesitate 
to contact customer service immediately. 

These jobs are also an excellent way to begin learning about Q-Chem’s text-based input 
and output formats in detail .  In many cases you can use these inputs as starting points for 
building your own input files, if you wish to avoid reading the rest of this manual! 
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CHAPTER 3 Q-CHEM INPUTS 

 

3.1 GENERAL FORM 

A graphical interface is the simplest way to control Q-Chem. However, the low level 
command line interface is available to enable maximum customization and user 
exploitation of all Q-Chem features. The command line interface requires a Q-Chem 
input file which is simply an ASCII text file. This input file can be created using your 
favorite editor (e.g. vi, emacs, jot, etc.) following the basic steps outlined in the next few 
chapters. 

Q-Chem’s input mechanism uses a series of keywords to signal user input sections of the 
input file. As required, the Q-Chem program searches the input file for supported 
keywords. When Q-Chem finds a keyword, it then reads the section of the input file 
beginning at the keyword until that keyword section is terminated $end. A short 
description of all Q-Chem keywords is provided in Figure 3.1. The user must understand 
the function and format of the $molecule (section 3.2) and $rem (section 3.5) keywords, 
as these keyword sections are where the user places the molecular geometric information 
and job specification details. 

The keywords $rem and $molecule are requisites of Q-Chem input files. 

As each keyword has a different function, the format required for specific keywords 
varies somewhat, to account for the different specialised information (format 
requirements are summarised at the end of this chapter). But, because each keyword in 
the input file is sought out independently by the program as the information is required, 
the overall format requirements of Q-Chem input files are much less stringent. e.g., it is 
not necessary to enter a user-defined basis set in a particular part of the input, if it is 
contained within the appropriate keyword ($basis) section and in the correct format. 
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$molecule Contains the molecular coordinate input (input file 
requisite) 

$end Terminates each keyword section 
$rem Job specification and customization parameters (input 

file requisite) 
$basis User-defined basis set information (see Chapter 7) 
$comment User comments for inclusion into output file 
$external_charges External charges and their positions 
$ecp User-defined effective core potentials (see Chapter 8) 
$multipole_field Details of a multipole field to apply 
$nbo Natural Bond Orbital package 
$occupied Guess orbitals to be occupied 
$opt Constraint definitions for geometry optimizations 
$plots Generate plotting information over a grid of points 

(see Chapter 10). 
$van_der_waals User-defined atomic radii for Langevin dipoles 

solvation (see Chapter 10) 
$xc_functional Details of user-defined DFT exchange-correlation 

functionals 
 
Figure 3.1 Q-Chem user input section keywords 
 
Notes: (1) Users are able to enter keyword sections in any order. 
 (2) Each keyword section must be terminated with the $end keyword. 
 (3) It is not necessary to have all keywords in an input file. 
 (4) Each keyword section will be described below. 
 (5) The entire Q-Chem input is case-insensitive. 

 
In general, users will need to enter variables for the $molecule and $rem keyword section 
and are encouraged to add a $comment for future reference. The necessity of other 
keyword input will become apparent throughout the manual, and is summarized at the 
end of this Chapter. 

See the Appendix and/or the $QC/samples directory with your release for specific 
examples of Q-Chem input using the keywords in Figure 3.1. 

The second general aspect of Q-Chem input, is that there are effectively four input 
sources: 
1. User input file (required) 
2. .qchemrc file in $HOME (optional) 
3. preferences files in $QC/config (optional) 
4. Internal program defaults and calculation results (built-in) 
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These are summarised in order of preference in Figure 3.2. Thus, the input mechanism 
offers a program default over-ride for all users, default override for individual users and, 
of course, the input file provided by the user overrides all defaults. Refer to Chapter 11 
for details of .qchemrc and preferences. 

Input file

.qchemrc

preferences

Q-Chem defaults

 

Figure 3.2 Diagram of input initialization override settings. The higher mechanism 
indicates override preference of lower mechanisms. 

Currently, Q-Chem only supports the $rem keyword in .qchemrc and preferences files. 

3.2 MOLECULAR COORDINATE INPUT ($MOLECULE) 

The $molecule section communicates to the program the charge, spin multiplicity and 
geometry of the molecule under investigation. The molecular coordinate input begins 
with two integers: the net charge and the spin multiplicity of the molecule. The net 
charge must be between -50 and 50, inclusively (0 for neutral molecules, 1 for cations, -1 
for anions, etc.). The multiplicity must be between 1 and 10, inclusively (1 for a singlet, 
2 for a doublet, 3 for a triplet, etc.). Each subsequent line of the molecular coordinate 
input corresponds to a single atom in the molecule (or dummy atom), irrespective of 
whether using Z-matrix internal coordinates or Cartesian coordinates. 
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Note: The coordinate system used for declaring an initial molecular geometry by 
default does not affect that used in a geometry optimization procedure. See the 
appendix which discusses the OPTIMIZE package in further detail. 

Q-Chem begins all calculations by rotating and translating the user-defined molecular 
geometry into a Standard Nuclear Orientation whereby the centre of nuclear charge is 
placed at the origin. This is a standard feature of most quantum chemistry programs. 

Note: Q-Chem ignores commas and equal signs, and requires all distances, positions 
and angles to be entered as Angstroms and degrees. 

$molecule 
0 1 
O 
H1  O  distance 
H2  O  distance  H1  theta 
 
distance = 1.0 
theta = 104.5 
$end 

Figure 3.3 Example of molecular coordinate input for a water molecule in Z-matrix 
coordinates. Note that the $molecule input begins with the charge and 
multiplicity. 

3.2.1 READING MOLECULAR COORDINATES FROM A PREVIOUS CALCULATION 

Often users wish to perform several calculations in quick succession, whereby the later 
calculations rely on results obtained from previous calculations. For example, geometry 
optimization at a low level of theory, followed by vibrational analysis and then, perhaps, 
single point energy at a higher level. Rather than having the user manually transfer the 
coordinates from the output of the optimization to the input file of a vibrational analysis 
or single point energy calculation, Q-Chem can transfer them directly from job to job. 

To achieve this requires that: 
1. The READ variable is entered into the molecular coordinate input 
2. Scratch files from a previous calculation have been saved. These may be obtained 

explicitly by using the save option across multiple job runs as described below and in 
Chapter 2, or implicitly when running multiple calculations in one input file, as 
described later in this chapter. 
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$molecule 
READ 
$end 
 
Figure 3.4 Reading a geometry from a prior calculation 

3.2.2 EXAMPLE 

 
 localhost-1> qchem job1.in job1.out job1 
 localhost-2> qchem job2.in job2.out job1 
 

Example 3.1 In this example, the job1 scratch files are saved in a directory 
$QCSCRATCH/job1 and are then made available to the job2 calculation. 

Note: The program must be instructed to read specific scratch files by the input of 
job2. 

Users are also able to use the READ function for molecular coordinate input using 
Q-Chem’s batch job file (see later in this chapter). 

3.2.3 READING MOLECULAR COORDINATES FROM ANOTHER FILE 

Users are able to use the READ function to read molecular coordinates from a second 
input file. The format for the coordinates in the second file follows that for standard 
Q-Chem input, and must be deliminated with the $molecule and $end keywords. 

$molecule 
READ filename 
$end 
 
Figure 3.5 Reading molecular coordinates from another file. filename maybe given 
either as the full file path or, path relative to the working directory. 
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3.3 CARTESIAN COORDINATES 

Q-Chem can accept a list of N atoms and their 3N Cartesian coordinates. The atoms can 
be entered either as atomic numbers or atomic symbols where each line corresponds to a 
single atom. The Q-Chem format for declaring a molecular geometry using Cartesian 
coordinates (in Angstroms) is: 

atom  x-coordinate y-coordinate z-coordinate 
 

3.3.1 EXAMPLES: 

$molecule 
0 1 
8 0.000000 0.000000 -0.212195 
1 1.370265 0.000000 0.848778 
1 -1.370265 0.000000 0.848778 
$end 

Example 3.2 Atomic number Cartesian coordinate input for H2O. 

 
$molecule 
0 1 
O 0.000000 0.000000 -0.212195 
H 1.370265 0.000000 0.848778 
H -1.370265 0.000000 0.848778 
$end 

Example 3.3 Atomic symbol Cartesian coordinate input for H2O. 

Notes: 
• Atoms can be declared by either atomic number or symbol 
• Coordinates can be entered either as variables/parameters or real numbers 

◊ Variables/parameters can be declared in any order 
◊ A single blank line separates parameters from the atom declaration 

Once all the molecular Cartesian coordinates have been entered, terminate the Molecular 
Coordinate Input with the $end keyword. 
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3.4 Z-MATRIX COORDINATES 

Z-matrix notation is one of the most common molecular coordinate input forms. The 
Z-matrix defines the positions of atoms relative to previously defined atoms using a 
length, an angle and a dihedral angle. Again, note that all bond lengths and angles must 
be in Angstroms and degrees. 

Note: As with the Cartesian coordinate input method, Q-Chem begins a calculation by 
taking the user-defined coordinates and translating and rotating them into a 
Standard Nuclear Orientation. 

The first three atom entries of a Z-matrix are different from the subsequent entries. The 
first Z-matrix line declares a single atom. The second line of the Z-matrix input declares a 
second atom, refers to the first atom and gives the distance between them. The third line 
declares the third atom, refers to either the first or second atom, gives the distance 
between them, refers to the remaining atom and gives the angle between them. All 
subsequent entries begin with an atom declaration, a reference atom and a distance, a 
second reference atom and an angle, a third reference atom and a dihedral angle. This can 
be summarised as: 

1. First atom 
2. Second atom, reference atom, distance 
3. Third atom, reference atom A, distance between A and the third atom, reference atom 

B, angle defined by atoms A, B and the third atom 
4. Fourth atom, reference atom A, distance, reference atom B, angle, reference atom C, 

dihedral angle (A, B, C and the fourth atom) 
5. All subsequent atoms follow the same basic form as (4) 
 

O1 
O2 O1 OO 
H1 O1 HO O2 HOO 
H2 O2 HO O1 HOO H1 HOOH 

Example 3.4 Z-matrix for hydrogen peroxide 

Line 1 declares an oxygen atom (O1). Line 2 declares the second oxygen atom (O2), 
followed by a reference to the first atom (O1) and a distance between them denoted OO. 
Line 3 declares the first hydrogen atom (H1), indicates it is separated from the first 
oxygen atom (O1) by a distance HO and makes an angle with the second oxygen atom 
(O2) of HOO. Line 4 declares the fourth atom and the second hydrogen atom (H2), 
indicates it is separated from the second oxygen atom (O2) by a distance HO and makes 
an angle with the first oxygen atom (O1) of HOO and makes a dihedral angle with the 
first hydrogen atom (H1) of HOOH. 

Some further points to note are: 
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• atoms can be declared by either atomic number or symbol 
◊ if declared by atomic number, connectivity needs to be indicated by Z-matrix 

line number 
◊ if declared by atomic symbol either 

• number similar atoms (e.g., H1, H2, O1, O2 etc.) and refer 
connectivity using this symbol, or 

• indicate connectivity by the line number of the referred atom 
• bond lengths and angles can be entered either as variables/parameters or real numbers 

◊ variables/parameters can be declared in any order 
◊ a single blank line separates parameters from the Z-matrix 

 

All the following examples are equivalent in the information forwarded to the Q-Chem 
program. 

$molecule 
0 1 
O1 
O2 O1 OO 
H1 O1 HO O2 HOO 
H2 O2 HO O1 HOO H1 HOOH 
 
OO=1.5 
HOO =120.0 
OH = 1.0 
HOOH= 180.0 
$end 

Example 3.5 Using parameters to define bond lengths and angles, and using numbered 
symbols to define atoms and indicate connectivity. 

 
$molecule 
0 1 
O1 
O2 O1 1.5 
H1 O1 1.0 O2 120.0 
H2 O2 1.0 O1 120.0 H1 180.0 
$end 

Example 3.6 Not using parameters to define bond lengths and angles, and using 
numbered symbols to define atoms and indicate connectivity. 
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$molecule 
0 1 
8 
8 1 OO 
1 1 HO 2 HOO 
1 2 HO 1 HOO 3 HOOH 
 
OO=1.5 
HOO=120.0 
OH=1.0 
HOOH=180.0 
$end 

Example 3.7 Using parameters to define bond lengths and angles, and referring to 
atom connectivities by line number. 

$molecule 
0 1 
8 
8 1 1.5 
1 1 1.0 2 120.0 
1 2 1.0 1 120.0 3 180.0 
$end 

Example 3.8 Referring to atom connectivities by line number, and entering bond 
length and angles directly. 

Obviously, a number of the formats outlined above are less appealing to the eye and 
more difficult for us to interpret than the others, but each communicates exactly the same 
Z-matrix to the Q-Chem program. 

3.4.1 DUMMY ATOMS 

Dummy atoms are indicated by the identifier X and followed, if necessary, by an integer. 
(e.g., X1, X2). Dummy atoms are often useful for molecules where symmetry axes and 
planes are not centred on a real atom, and have also been useful in the past for choosing 
variables for structure optimization and introducing symmetry constraints. 

Note: Dummy atoms play no role in the quantum mechanical calculation, and are used 
merely for convenience in specifying other atomic positions or geometric 
variables. 
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3.5 JOB SPECIFICATION: THE $REM ARRAY CONCEPT 

The $rem array is the means by which users convey to Q-Chem the type of calculation 
they wish to perform (level of theory, basis set, convergence criteria, etc.) The keyword 
$rem signals the beginning of the overall j ob specification. Within the $rem section the 
user inserts $rem variables (one per line) which define the essential details of the 
calculation. The format for entering $rem variables within the $rem keyword section of 
the input is: 

REM_VARIABLE OPTION [Comment] 
 
Figure 3.6 Format for declaring $rem variables in the $rem keyword section of the 

Q-Chem input file. Note, Q-Chem only reads the first two arguments on 
each line of $rem. All other text is ignored and can be used for placing 
short user comments. 

The $rem array stores all details required to perform the calculation, and details of output 
requirements. It provides the flexibilit y to customize a calculation to specific user 
requirements. If a default $rem variable setting is indicated in this manual, the user does 
not have to declare the variable in order for the default to be initiated (e.g., the default 
JOBTYPE is a single point energy (SP)). Thus, to perform a single point energy 
calculation, the user does not need to set the $rem variable JOBTYPE to SP. However, to 
perform an optimisation, for example, it is necessary to override the program default by 
setting JOBTYPE to OPT. 

A number of the $rem variables have been set aside for internal program use, as they 
represent variables automatically determined by Q-Chem (e.g., the number of atoms, the 
number of basis functions). These need not concern the user. 

User communication to the internal program $rem array comes in two general forms: (1) 
long term, machine-specific customization via the .qchemrc and preferences files 
(Chapter 9) and, (2) the Q-Chem input deck. There are many defaults already set within 
the Q-Chem program many of which can be overridden by the user. Checks are made to 
ensure that the user specifications are permissible (e.g., integral accuracy is confined to 
10-12) and adjusted, if necessary. If adjustment is not possible, an error message is 
returned. Details of these checks and defaults will be given as they arise. 

The user need not know all elements, options and details of the $rem array in order to 
fully exploit the Q-Chem program. Many of the necessary elements and options are 
determined automatically by the program, or the optimized default parameters, supplied 
according to the user’s basic requirements, available disk and memory, and the operating 
system and platform. 
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3.6 $REM ARRAY FORMAT IN Q-CHEM INPUT 

All data between the $rem keyword and the next appearance of $end, is assumed to be 
user $rem array input. On a single line for each $rem variable, the user declares the $rem 
variable, followed by a blank space (tab stop inclusive) and then the $rem variable 
option. It is recommended that a comment be placed following a space after the $rem 
variable option. $rem variables are case insensitive and a full li sting is supplied in the 
appendix. Depending on the particular $rem variable, $rem options are entered either as a 
case-insensitive keyword, an integer value or logical identifier (true/false). The format 
for describing each $rem variable in this manual is as follows: 

REM_VARIABLE 
 Gives a short description of what the variable controls 
 VARIABLE: 
  Defines the variable as either INTEGER, LOGICAL or STRING 
 DEFAULT: 
  Describes Q-Chem’s internal default, if any exist 
 OPTIONS: 
  Lists options available for the user 
 RECOMMENDATION: 
  Gives a quick recommendation 
 

The end of the $rem location declaration is signalled by the string $end. 

$rem 
rem_variable  option [user_comment] 
rem_variable  option [user_comment] 
... 
... 
$end 
 
Figure 3.7 General format of the $rem section of the text input file. 
 
Notes: (1) Erroneous lines will t erminate the calculation 
 (2) Tab stops can be used to format input 
 (3) Entire lines can be commented by prefixing the line with an exclamation 

mark “ !”  
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3.7 MINIMUM $REM ARRAY REQUIREMENTS 

Although Q-Chem provides defaults for most $rem variables, the user will always have 
to stipulate a few others. For example, in a single point energy calculation, the minimum 
requirements will be BASIS (defining the basis set), EXCHANGE (defining the level of 
theory to treat exchange) and CORRELATION (defining the level of theory to treat 
correlation, if required).  Furthermore, if a wavefunction-based correlation treatment 
(such as MP2) is used, HF is taken as the default for exchange. 

$rem 
BASIS   6-31G* Just a small basis set 
CORRELATION  MP2  MP2 energy 
$end 

Example 3.9 Example of minimum $rem requirements to run an MP2/6-31G* energy 
calculation. 

3.8 COMMENTS ($COMMENT) 

Users are able to add comments to the input file outside keyword input sections, which 
will be ignored by the program. This can be useful as reminders to the user, or perhaps, 
when teaching another user to set up inputs. Q-Chem has also provided a means of 
adding comments via the $comment which will be placed into the output file. For 
example, an initial geometry obtained at another level of theory, or from a publication, 
may be used to calculate other properties using Q-Chem. The source of the initial 
geometry can then automatically be placed into the output file as a comment. 

Note: Currently the entire input deck is copied to the top of the output file when a 
calculation commences. 

3.9 USER-DEFINED BASIS SET ($BASIS) 

The $rem variable BASIS (Chapter 7) allows the user to indicate that the basis set is being 
user-defined. The user-defined basis set is entered in the $basis section of the input. For 
further details of entering a user-defined basis set, see chapter 7. 

3.10 USER-DEFINED PSEUDOPOTENTIALS ($ECP) 

The $rem variable ECP (Chapter 8) allows the user to indicate that pseudopotentials 
(effective core potentials) are being user-defined. The user-defined effective core 
potential is entered in the $ecp section of the input. For further details, see chapter 8 
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3.11 GEOMETRY OPTIMIZATION WITH GENERAL CONSTRAINTS ($OPT) 

When a user defines the JOBTYPE to be a molecular geometry optimization, Q-Chem 
scans the input deck for the $opt keyword. Distance, angle, dihedral and out-of-plane 
bend constraints imposed on any atom declared by the user in this section, are then 
imposed on the optimization procedure. See chapter 7 for details. 

3.12 USER-DEFINED OCCUPIED GUESS ORBITALS ($OCCUPIED) 

It is sometimes useful for the occupied guess orbitals to be other than the lowest Nalpha 
(or Nbeta) orbitals. Q-Chem allows the occupied guess orbitals to be defined using the 
$occupied keyword. The user defines occupied guess orbitals by listing the alpha orbitals 
to be occupied on the first line, and beta on the second (see chapter 4). 

3.13 NATURAL BOND ORBITAL PACKAGE ($NBO) 

The default action in Q-Chem is not to run the NBO package. To turn the NBO package 
on, set the $rem variable NBO to ON. To access further features of NBO, place standard 
NBO package parameters into a keyword section in the input file headed with the $nbo 
keyword. Terminate the section with the termination string $end. 

3.14 ADDITION OF EXTERNAL CHARGES ($EXTERNAL_CHARGES) 

If the $external_charges keyword is present, Q-Chem scans for a set of external charges 
to be incorporated into a calculation. The format for a set of external charges is the 
Cartesian coordinates, followed by the charge size, one charge per line. Charges and 
coordinates are in atomic units. Coordinates are in the Standard Nuclear Orientation. 

$external_charges 
x-coord1  y-coord1  z-coord1  charge1 
x-coord2  y-coord2  z-coord2  charge2 
x-coord3  y-coord3  z-coord3  charge3 
... 
$end 

Figure 3.8 General format for incorporating s set of external charges. 

3.15 APPLYING A MULTIPOLE FIELD ($MULTIPOLE_FIELD) 

Q-Chem has the capability to apply a multipole field to the molecule under investigation. 
Q-Chem scans the input deck for the $multipole_field keyword, and reads each line (up 
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to the terminator keyword, $end) as a single component of the applied field. The format 
is: 
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$multipole_field 
field_component_1 value_1 
field_component_2 value_2 
... 
$end 

Figure 3.9 General format for imposing a multipole field. 

The field_component is simply stipulated using the Cartesian representation e.g., X, Y, Z, 
XX,  XY, YY ... XXX, etc., and the value or size of the imposed field is in atomic units. 

3.16 ORBITALS, DENSITIES AND ESPS ON A MESH ($PLOTS) 

The $plots part of the input permits the evaluation of molecular orbitals, densities, 
electrostatic potentials, transition densities, electron attachment and detachment densities 
on a user-defined mesh of points.  For more details, see Chapter 10. 

3.17 USER-DEFINED VAN DER WAALS RADII ($VAN_DER_WAALS) 

The $van_der_waals section of the input enables the user to customize the Van der Waals 
radii that are important parameters in the Langevin dipoles solvation model.  For more 
details, see chapter 10.  

3.18 USER-DEFINED EXCHANGE-CORRELATION DENSITY FUNCTIONALS 

($XC_FUNCTIONAL) 

The EXCHANGE and CORRELATION $rem variables (Chapter 4) allow the user to 
indicate that the exchange-correlation density functional will be user-defined. The user 
defined exchange-correlation is to be entered in the $xc_functional part of the input. The 
format is: 
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$XC_functional 
X exchange_symbol  coefficient 
X exchange_symbol  coefficient 
. 
. 
. 
C correlation_symbol  coefficient 
C correlation_symbol  coefficient 
. 
. 
. 
K      coefficient 

Figure 3.10 General form for entering user-defined XC functionals. 

Note: Coefficients are real numbers. 



Chapter 3: Q-Chem Inputs 31 

3.16 MULTIPLE JOBS IN A SINGLE FILE: Q-CHEM BATCH JOB FILES 

It is sometimes useful to place a series of jobs into a single ASCII f ile. This feature is 
supported by Q-Chem and is invoked by separating jobs with the string “@@@” on a 
single line. All output is subsequently appended to the same output file for each job 
within the file. 

Note: The first job will overwrite any existing output file of the same name in the 
working directory. Restarting the job will also overwrite any existing file. 

In general, multiple jobs are placed in a single file for two reasons: 
1. To use information from a prior job in a later job 
2. To keep projects together in a single file 
 

The “@@@” feature allows these objectives to be met, but the following points should 
be noted: 

• Q-Chem reads all the jobs from the input file on initiation and stores them. The user 
cannot make changes to the details of jobs which have not been run post command 
line initiation. 

• If any single job fails, Q-Chem proceeds to the next job in the batch file. 
• No check is made to ensure that dependencies are satisfied, or that information is 

consistent (e.g., an optimisation job followed by a frequency job; reading in the new 
geometry from the optimization for the frequency). No check is made to ensure that 
the optimization was successful. Similarly, it is assumed that both jobs use the same 
basis set when reading in MO coeff icients from a previous job. 

• Scratch files are saved between multi -job/single files runs (i.e., using a batch file with 
“@@@” separators), but are deleted on completion unless a third qchem command 
line argument is supplied (see chapter 2). 

 

Using batch files with the “@@@” separator is clearly most useful for cases relating to 
point 1 above. The alternative would be to cut and paste output, and/or use a third 
command line argument to save scratch files between separate runs. 

For example, the following input file will optimize the geometry of H2 at HF/6-31G*, 
calculate vibrational frequencies at HF/6-31G* using the optimized geometry and the 
self-consistent MO coeff icients from the optimization and, finally, perform a single point 
energy using the optimized geometry at the MP2/6-311G(d,p) level of theory. Each job 
will use the same scratch area, reading files from previous runs as instructed. 
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$comment 
Optimize H-H at HF/6-31G* 
$end 
 
$molecule 
0 1 
H 
H 1 r 
 
r = 1.1 
$end 
 
$rem 
JOBTYPE  OPT  Optimise the bond length 
EXCHANGE  HF 
CORRELATION NONE 
BASIS  6-31G* 
$end 
 
@@@ 
$comment 
Frequencies of H-H at HF/6-31G* 
$end 
 
$molecule 
READ 
$end 
 
$rem 
JOBTYPE  FREQ  Calculate vibrational frequencies 
EXCHANGE  HF 
CORRELATION NONE 
BASIS  6-31G* 
SCF_GUESS  READ  Read the MOs from disk 
$end 
 
@@@ 
$comment 
H-H at MP2/6-311G(d,p)//HF/6-31G* 
$end 
 
$molecule 
READ 
$end 
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$rem 
EXCHANGE  HF 
CORRELATION MP2 
BASIS  6-311G(d,p) 
$end 
 

Example 3.10 Example of using information from previous jobs in a single input file. 

Notes: (1) Output is concatenated into the same output file. 
 (2) Only two arguments are necessarily supplied to the command line interface. 
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3.17 Q-CHEM TEXT INPUT SUMMARY 

• Q-Chem text input file uses a series of keywords 
• Q-Chem scans the input file for keywords, so they do not have to be placed in any 

particular order 
• Each keyword represents a section of the input file 
• Q-Chem reads in data, variables and options from keyword sections 
• Each keyword section is terminated with $end 
• Not all keywords have to be entered, but $rem and $molecule are compulsory 
• Input file is case-insensitive 
• Multiple jobs in a single input file are separated by the string “@@@” on a single 

line 
 

Keyword Description 

$molecule Signifies the beginning of the molecular coordinate input. 
Input file requisite 

$end Terminates each keyword section 

$rem Job specification and customization parameters. Input file 
requisite 

$basis Indicates the beginning of the basis set information for user 
defined basis sets. (See chapter 7) 

$ecp Indicates the beginning of pseudopotential information for 
user defined effective core potentials. (See chapter 8) 

$comment All i nformation placed in the section is incorporated into the 
Q-Chem output file. All other comments remain as input file 
user comments and are not read 

$external_charges Section containing external charges and positions 

$multipole_field Section contains details of a multipole field to apply 

$nbo Placing Natural Bond Orbital package options 

$occupied Guess orbitals to be occupied 

$opt Constraint definitions for geometry optimizations 

$plots Input for density, orbital, etc evaluation over meshes 

$van_der_waals User-defined atomic radii for Langevin dipoles solvation  

$xc_functional Details of user-defined DFT exchange-correlation 
functionals 

Table 3.1 Description summary of all Q-Chem input keywords. 
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3.17.1 KEYWORD FORMAT SUMMARY 

Keyword: $molecule 
 
Four methods: 
1. Z-matrix (Angstroms and degrees) 
 $molecule 
 {Z-Matrix} 
 {blank line, if parameters are being used} 
 {Z-matrix parameters, if used} 
 $end 
 
2. Cartesian Coordinates (Angstroms) 
 $molecule 
 {Cartesian coordinates} 
 {blank line, if parameter are being used} 
 {Coordinate parameters, if used} 
 $end 
 
3. Read from a previous calculation 
 $molecule 
 READ 
 $end 
 
4. Read from a file 
 $molecule 
 READ  filename 
 $end 
 
 
Keyword: $rem 
 
$rem 
rem_variable rem_option [user comment] 
... 
$end 
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Keyword: $basis 
 
$basis 
atomic_symbol 0 
ang_mom_sym contraction_K  scaling 
exp_1   coeff_1_Lmin  coeff_1_(Lmin+1) ... coeff_1_Lmax 
exp_2   coeff_2_Lmin  coeff_2_(Lmin+1) ... coeff_2_Lmax 
exp_3   coeff_3_Lmin  coeff_2_(Lmin+1) ... coeff_3_Lmax 
.   .   .   . . 
.   .   .   . . 
exp_K   coeff_K_Lmin  coeff_K_(Lmin+1) ... coeff_K_Lmax 
**** 
atomic_symbol 0 
ang_mom_sym contraction_K  scaling 
exp_1   coeff_1_Lmin  coeff_1_(Lmin+1) ... coeff_1_Lmax 
exp_2   coeff_2_Lmin  coeff_2_(Lmin+1) ... coeff_2_Lmax 
exp_3   coeff_3_Lmin  coeff_2_(Lmin+1) ... coeff_3_Lmax 
.   .   .   . . 
.   .   .   . . 
exp_K   coeff_K_Lmin  coeff_K_(Lmin+1) ... coeff_K_Lmax 
**** 
... 
**** 
$end 
 
 
Keyword: $ecp 
 
$ecp 
For each atom that will bear an ECP 
 Chemical symbol for the atom 
 ECP name ; the L value for the ECP ; number of core electrons removed 
 For each ECP component (in the order unprojected, 0̂P , 1̂P , ... , 1L̂P − ) 

  The component name 
  The number of Gaussians in the component 
  For each Gaussian in the component 
   The power of r ; the exponent ; the contraction coeff icient 
 A sequence of four asterisks (i.e. **** ) 
$end 
 
 
Keyword: $comment 
 
$comment 
{User comments - copied to output file} 
$end 
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Keyword: $external_charges (atomic units) 
 
$external_charges 
x-coord1  y-coord1  z-coord1  charge1 
x-coord2  y-coord2  z-coord2  charge2 
... 
$end 
 
 
Keyword: $multipole_field (atomic units) 
 
$multipole_field 
field_component1 value1 
field_component2 value2 
... 
$end 
 
 
Keyword: $nbo 
 
$nbo 
{Refer to Chapter 10 and NBO Program manual} 
{must set $rem NBO to ON to initiate NBO package} 
$end 
 
 
Keyword: $occupied 
$occupied 
αi αj αk αl ... {alpha guess orbitals to be occupied} 
βl βm βn βo ... {beta guess orbitals to be occupied} 
$end 
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Keyword: $opt (Angstroms and degrees) 
$opt 
CONSTRAINT 
stre atom1 atom2 value 
... 
bend atom1 atom2 atom3 value 
... 
outp atom1 atom2 atom3 atom4 value 
... 
tors atom1 atom2 atom3 atom4 value 
... 
linc atom1 atom2 atom3 atom4 value 
... 
linp atom1 atom2 atom3 atom4 value 
... 
ENDCONSTRAINT 
FIXED 
atom coordinate_reference 
... 
ENDFIXED 
DUMMY 
idum type  list_length defining_list 
... 
ENDDUMMY 
CONNECT 
atom list_length list 
... 
ENDCONNECT 
$end 
 
 
Keyword: $plots 
$plots 
A comment line here... 
Nx  xmin  xmax        (# x points, x range) 
Ny  ymin  ymax 
Nz  zmin  zmax 
NMO  NRho  NTrans  NDA       (number of quantities to plot) 
MO(1)    MO(2)    ...  MO(NMO)   (only if NMO > 0) 
Rho(1)   Rho(2)   ...  Rho(NRho)  (only if NRho > 0) 
Trans(1) Trans(2) ...  Trans(NTrans)  (only if Ntrans > 0) 
DA(1)    DA(2)    ...  DA(NDA)  (only if NDA > 0) 
$end 
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Keyword: $van_der_waals 
$van_der_waals  
1 
atomic number      VdW- radius (Å )  
...  
$end  
(alternative format) 
$van_der_waals  
2 
sequential atom number    VdW- radius (Å)  
...  
$end  
 
 
Keyword: $xc_functional 
$xc_functional  
X exchange_symbol   coefficient  
X exchange_symbol   coefficient  
.  
.  
.  
C correlation_symbol   coefficient  
C correlation_ symbol   coefficient  
.  
.  
.  
K      coefficient  
$end  
 
 



40 Chapter 3: Q-Chem Inputs 

3.18 Q-CHEM OUTPUT FILE 

The Q-Chem output file is the file to which details of the job invoked by the user are 
printed. The type of information printed to this files depends on the type of job (single 
point energy, geometry optimisation etc.) and the $rem variable print levels. The general 
and default form is as follows: 

• User input 
• Q-Chem citation 
• Molecular geometry in Cartesian coordinates 
• Molecular point group, nuclear repulsion energy, number of alpha and beta electrons 
• Basis set information (number of functions, shells and function pairs) 
• SCF details (method, guess, optimization procedure) 
• SCF iterations (for each iteration, energy and DIIS error is reported) 
• {depends on job type} 
• Molecular orbital symmetries 
• Mulliken population analysis 
• Cartesian multipole moments 
• Job completion 
 

Note: Q-Chem overwrites any existing output files in the working directory when it is 
invoked with an existing file as the output file parameter. 

3.19 Q-CHEM SCRATCH FILES 

The directory represented by the environment variable QCSCRATCH is the location 
Q-Chem places scratch files it creates on execution. Users may wish to use the 
information created for subsequent calculations.  See chapter 2 for information on saving 
files. 
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CHAPTER 4 SELF-CONSISTENT FIELD 
GROUND STATE METHODS 

 

4.1 INTRODUCTION 

4.1.1 OVERVIEW OF CHAPTER 

Theoretical chemical models [1] involve two principal approximations.  One must 
specify the type of atomic orbital basis set used (See Chapters 7 and 8), and one must 
specify the way in which the instantaneous interactions (or correlations) between 
electrons are treated.  Self-consistent field (SCF) methods are the simplest and most 
widely used electron correlation treatments, and contain as special cases all Kohn-Sham 
density functional methods and the Hartree-Fock method.  This chapter summarizes Q-
Chem’s SCF capabiliti es, while the next chapter discusses more complex (and 
computationally expensive!) wavefunction-based methods for describing electron 
correlation.  If you are new to quantum chemistry, we recommend that you also purchase 
an introductory textbook on the physical content and practical performance of standard 
methods [1,2,3]. 

This chapter is organized so that the earlier sections provide a mixture of basic 
theoretical background, and a description of the minimum number of program input 
options that must be specified to run SCF jobs.  Specifically, this includes the sections 
on: 

• Hartree-Fock theory 

• Density functional theory.  Note that all basic input options described in the 
Hartree-Fock section (4.2) also apply to density functional calculations. 

Later sections introduce more specialized options that can be consulted as needed: 

• Large molecules and linear scaling methods.  A short overview of the ideas 
behind methods for very large systems and the options that control them. 

• Initial guesses for SCF calculations.  Changing the default initial guess is 
sometimes important for SCF calculations that do not converge. 

• Converging the SCF calculation.  This section describes the iterative methods 
available to control SCF calculations in Q-Chem.  Altering the standard options is 
essential for SCF jobs that have failed to converge with the default options. 

• Unconventional SCF calculations.  Some nonstandard SCF methods with novel 
physical and mathematical features.  Explore further if you are interested! 
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4.1.2 THEORETICAL BACKGROUND 

In 1926 Schrödinger [4] combined the wave nature of the electron with the statistical 
knowledge of the electron viz. Heisenberg’s Uncertainty Principle [5] to formulate an 
eigenvalue equation for the total energy of a molecular system. If we focus on stationary 
states and ignore the effects of relativity, we have the time independent, non-relativistic 
equation 

 ( , ) ( , ) ( ) ( , )H EΨ = ΨR r R r R R r  (0.1) 

where the coordinates R and r refer to nuclei and electron position vectors respectively 
and H is the Hamiltonian operator (in atomic units) 
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∇2 is the Laplacian operator 
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Z is the nuclear charge, MA is the ratio of the mass of nucleus A to the mass of an 
electron, RAB = |RA - RB| is the distance between the Ath and Bth nucleus, rij = |ri - rj| is the 
distance between the ith and jth electrons, riA = |ri - RA| is the distance between the ith 
electron and Ath nucleus, M is the number of nuclei and N is the number of electrons. E is 
an eigenvalue of H, equal to the total energy, and the wave function Ψ, is an 
eigenfunction of H. 

Separating the motions of the electrons from that of the nuclei, an idea originally due to 
Born and Oppenheimer [6], yields the electronic Hamiltonian operator. 
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The solution of the corresponding electronic Schrödinger equation 

 elec elec elec elecH EΨ = Ψ  (0.5) 

gives the total electronic energy (Eelec,) and electronic wave function Ψelec, which 
describes the motion of the electrons for a fixed nuclear position. The total energy is 
obtained by simply adding the nuclear-nuclear repulsion energy (fifth term of (0.2)) to 
the total electronic energy 

 Tot elec nucE E E= +  (0.6) 
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Solving the eigenproblem (0.5) yields a set of eigenfunctions (Ψ0, Ψ1, Ψ2 ...) with 
corresponding eigenvalues (E0, E1, E2 ...) where E0 ≤ E1 ≤ E2 ≤ E3 ... 

Our interest lies in determining the lowest eigenvalue and associated eigenfunction which 
correspond to the ground state energy and wavefunction of the molecule. However, 
solving (0.5) for other than the most trivial systems is extremely difficult and the best we 
can do in practice is to find approximate solutions. 

The first approximation used to solve (0.5) is that electrons move independently within 
molecular orbitals (MO), each of which describes the probability distribution of a single 
electron. Each MO is determined by considering the electron as moving within an 
average field of all the other electrons. Ensuring that the wave function is antisymmetric 
upon electron interchange, yields the well known Slater [7,8] determinant wavefunction 
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where iχ , a spin orbital, is the product of a molecular orbital ψ
i
 and a spin function (α or 

β). 

One obtains the optimum set of MOs by variationally minimizing the energy in what is 
called a “self-consistent field” or SCF approximation to the many-electron problem. The 
archetypal SCF method is the Hartree-Fock approximation, but these SCF methods also 
include Kohn-Sham Density Functional Theories (see section 4.5). All SCF methods lead 
to equations of the form 

 ( ) ( ) ( )i if i χ εχ=x x  (0.8) 

where the Fock operator f(i) can be written 

 21
( ) ( )

2
eff

if i iυ= − ∇ +  (0.9) 

Here x
i
 are spin and spatial coordinates of the ith electron, χ are the spin orbitals and νeff is 

the effective potential “seen” by the ith electron which depends on the spin orbitals of the 
other electrons. The nature of the effective potential νeff depends on the SCF methodology 
and will be elaborated on in further sections. 

The second approximation usually introduced when solving (0.5), is the introduction of 
an Atomic Orbital (AO) basis. AOs (φµ) are usually combined linearly to approximate the 
true MOs. There are many standardized, atom-centered basis sets and details of these are 
discussed in Chapter 7. 
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After eliminating the spin components in (0.8) and introducing a finite basis, 

 i icµ µ
µ

ψ φ= ∑  (0.10) 

(0.8) reduces to the Roothaan-Hall matrix equation 

 =FC SCεε  (0.11) 

where F is the Fock matrix, C is a square matrix of molecular orbital coefficients, S is 
the overlap matrix with elements 

 ( ) ( ) dSµν µ νφ φ= ∫ r r r  (0.12) 

and εε is a diagonal matrix of the orbital energies. Generalizing to an unrestricted 
formalism by introducing separate spatial orbitals for α and β spin in (0.7) yields the 
Pople-Nesbet [9] equations 

 
α α α α

β β β β

=

=

F C SC

F C SC

εε

εε
 (0.13) 

Solving (0.11) or (0.13) yields the restricted or unrestricted finite basis Hartree-Fock 
approximation. This approximation inherently neglects the instantaneous electron-
electron correlations which are averaged out by the SCF procedure, and while the 
chemistry resulting from HF calculations often offers valuable qualitative insight, 
quantitative energetics are often poor. In principle, the DFT SCF methodologies are able 
to capture all the correlation energy (the difference in energy between the HF energy and 
the true energy). In practice, the best currently available density functionals perform 
well, but not perfectly and conventional HF-based approaches to calculating the 
correlation energy are still often required.  They are discussed separately in the following 
chapter. 

In self-consistent field methods, an initial guess is calculated for the MOs and, from this, 
an average field seen by each electron can be calculated. A new set of MOs can be 
obtained by solving the Roothaan-Hall or Pople-Nesbet eigenvalue equations ((0.11) or 
(0.13)). This procedure is repeated until the new MOs differ negligibly from those of the 
previous iteration. 

Because they often yield acceptably accurate chemical predictions at a reasonable 
computational cost, self-consistent field methods are the corner stone of most quantum 
chemical programs and calculations. The formal costs of many SCF algorithms is O(N4), 
that is, they grow with the fourth power of the size (N) of the system. This is slower than 
the growth of the cheapest conventional correlated methods but recent work by Q-Chem, 
Inc. and its collaborators has dramatically reduced it to O(N), an improvement that now 
allows SCF methods to be applied to molecules previously considered beyond the scope 
of ab initio [1] treatment. 
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In order to carry out an SCF calculation using Q-Chem, three $rem variables need to be 
set: 

• BASIS   to specify the basis set (see chapter 7) 
• EXCHANGE  method for treating Exchange 
• CORRELATION  method for treating Correlation (defaults to NONE) 
 

Types of ground state energy calculations currently available in Q-Chem are summarized 
in Table 4.1. 

 
 

Calculation $rem Variable JOBTYPE 
Single point energy (default) SINGLE_POINT, SP 
Force FORCE 
Equilibrium Structure Search OPTIMIZATION, OPT 
Transition Structure Search TS 
Frequency FREQUENCY, FREQ 

Table 4.1 The type of calculation to be run by Q-Chem is controlled by the $rem 
variable JOBTYPE. 
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4.2 HARTREE-FOCK CALCULATIONS 

4.2.1 HARTREE-FOCK EQUATIONS 

As with much of the theory underlying modern quantum chemistry, the Hartree-Fock 
approximation was developed shortly after publication of the Schrödinger equation, but 
remained a qualitative theory until the advent of the computer. Although the HF 
approximation tends to yield qualitative chemical accuracy, rather than quantitative 
information, and is generally inferior to many of the DFT approaches available, it 
remains as a useful tool in the quantum chemist’s toolkit.  In particular, for organic 
chemistry, HF predictions of molecular structure are very useful. 

Consider once more the Roothaan-Hall equations, (0.11) or (0.13), which can be traced 
back to the integro-differential equation (0.8) where the effective potential νeff  depends 
on the SCF methodology. In a restricted HF (RHF) formalism, the effective potential can 
be written as 

 [ ]
2

1 1

2 (1) (1)
N M

eff A
a a

a A A

Z
J K

r
υ

=
= − −∑ ∑  (0.14) 

where the Coulomb and exchange operators are defined as 

 *

12

1
(1) (2) (2)da a aJ

r
ψ ψ= ∫ 2r  (0.15) 

 *

12

1
(1) (1) (2) (2)d (1)a i a i aK

r
ψ ψ ψ ψ

 
=  

 
∫ 2r  (0.16) 

respectively. By introducing an atomic orbital basis, we obtain Fock matrix elements 

 coreF H J Kµν µν µν µν= + −  (0.17) 

where the core Hamiltonian matrix elements 

 coreH T Vµν µν µν= +  (0.18) 

consist of kinetic energy elements 

 21
( ) ( )d

2
Tµν µ νφ φ = − ∇  ∫ r r r  (0.19) 

and nuclear attraction elements 
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 ( ) ( )dA

A

Z
Vµν µ νφ φ

 
= − −  

∑∫
A

r r r
R r

 (0.20) 

The Coulomb and Exchange elements are given by 

 ( )|J Pµν λσ
λσ

µν λσ= ∑  (0.21) 

 ( )1
|

2
K Pµν λσ

λσ
µλ νσ= ∑  (0.22) 

where the density matrix elements are 

 
/ 2

1

2
N

a a
a

P C Cµν µ ν
=

= ∑  (0.23) 

and the two electron integrals are 

 ( )
12

1
| ( ) ( ) ( ) ( )d d

r
µ ν λ σµν λσ φ φ φ φ

 
=  

 
∫∫ 1 1 2 2 1 2r r r r r r  (0.24) 

Note: The formation and utili zation of two-electron integrals is a topic central to the 
overall performance of SCF methodologies. The performance of the SCF 
methods in new quantum chemistry software programs can be quickly estimated 
simply by considering the quality of their atomic orbital integrals packages. See 
the appendix for details of Q-Chem’s AOINTS package. 

Substituting the matrix element (0.17) back into the Roothaan-Hall equations (0.11) and 
solving until self-consistency is achieved will yield the Restricted Hartree-Fock (RHF) 
energy and wavefunction. Alternatively, one could have adopted the unrestricted form of 
the wavefunction by defining an alpha and beta density matrix 

 1

1

n

a a
a

n

a a
a

P C C

P C C

α

β

α α α
µν µ ν

β β β
µν µ ν

=

=

=

=

∑

∑
 (0.25) 

and the total electron density matrix PT is simply the sum of the alpha and beta density 
matrices. The unrestricted alpha Fock matrix 

 coreF H J Kα α
µν µν µν µν= + −  (0.26) 

differs from the restricted one only in the exchange contributions where the alpha 
exchange matrix elements are given by 
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 ( )|
N N

K Pα α
µν λσ

λ σ
µλ νσ= ∑∑  (0.27) 

4.2.2 BASIC HARTREE-FOCK JOB CONTROL 

In brief, Q-Chem supports the 3 main variants of the Hartree-Fock method.  They are: 

• Restricted Hartree-Fock (RHF) for closed shell molecules.  It is typically appropriate 
for closed shell molecules at their equilibrium geometry, where electrons occupy 
orbitals in pairs. 

• Unrestricted Hartree-Fock (UHF) for open shell molecules.  Appropriate for radicals 
with an odd number of electrons, and also for molecules with even numbers of 
electrons where not all electrons are paired (for example stretched bonds and 
diradicaloids). 

• Restricted open shell Hartree-Fock (ROHF) for open shell molecules, where the 
alpha and beta orbitals are constrained to be identical. 

Only 2 $rem variables are required in order to run Hartree-Fock (HF) calculations: 

1) EXCHANGE must be specified as HF. 

2) A valid keyword for BASIS must be specified (see Chapter 7). 

In slightly more detail, here is a list of basic $rem variables associated with running 
Hartree-Fock calculations.  See chapter 7 for further detail on basis sets available and 
chapter 8 for specifying effective core potentials. 

JOBTYPE 
 Specifies the calculation 
 VARIABLE: 
  STRING 
 DEFAULT: 
  SP  Single point energy 
 OPTIONS: 
  SP  Single point energy 
  OPT   Geometry Minimization 
  TS  Transition Structure Search 
  FREQ  Frequency Calculation 
  FORCE Analytical Force calculation 
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EXCHANGE 
 Specifies the exchange level of theory 
 VARIABLE: 
  STRING 
 DEFAULT: 
  No default 
 OPTIONS: 
  HF     Exact (Hartree-Fock) 
 RECOMMENDATION: 
  HF for Hartree-Fock calculations 
 
BASIS 
 Sets the basis sets to be used 
 VARIABLE: 
  STRING 
 DEFAULT: 
  No default basis set 
 OPTIONS: 
  General, Gen  User defined ($basis keyword required) 
  Symbol  Use standard basis sets as per Chapter 7 
 RECOMMENDATIONS: 
  Consult literature and reviews to aid your selection 
 
PRINT_ORBITALS 

Prints orbital coefficients with atom labels in analysis part of output. 
VARIABLE: 
 INTEGER/LOGICAL 
DEFAULT: 
 FALSE 
OPTIONS: 
 TRUE   Prints occupied orbitals plus 5 virtuals. 
 NVIRT  Number of virtuals to print. 
RECOMMENDATION: 
 Use TRUE unless more virtuals are desired. 
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THRESH 
 Cutoff for neglect of two electron integrals. 10-THRESH (THRESH ≤ 14) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  8 for single point energies 
  10 for optimizations and frequency calculations 
 OPTIONS: 
  User-defined 
 RECOMMENDATION: 

Should be at least three greater than SCF_CONVERGENCE.  Increase for 
more significant figures, at greater computational cost. 

 
SCF_CONVERGENCE 
 SCF is considered converged when the wavefunction error is less that 

10-SCF_CONVERGENCE.  Adjust the value of THRESH at the same time. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  5  For single point energy calculations 
  8  for geometry optimizations and vibrational analysis 
 OPTIONS: 
  User-defined 
 RECOMMENDATION: 

Tighter criteria for geometry optimization and vibration analysis.  Larger 
values provide more significant figures, at greater computational cost. 

 
UNRESTRICTED 
 Controls the use of restricted or unrestricted orbitals 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE  (Restricted) Closed-shell systems 
  TRUE   (Unrestricted) Open-shell systems 
 OPTIONS: 
  FALSE  Restricted open-shell HF (ROHF) 
 RECOMMENDATION: 

Use default unless ROHF is desired.  Note that for unrestricted 
calculations on systems with an even number of electrons it is usually 
necessary to break alpha-beta symmetry in the initial guess, by using 
SCF_GUESS_MIX  or providing $occupied information (see initial guess 
section). 
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4.2.3 ADDITIONAL HARTREE-FOCK JOB CONTROL OPTIONS 

Listed below are a number of useful options to customize a Hartree-Fock calculation. 
This is only a short summary of the function of these $rem variables.  A full list of all 
SCF-related variables is provided in Appendix C.  A number of other specialized topics 
(large molecules, customizing initial guesses, and converging the calculation) are 
discussed separately in Sections 4.4, 4.5, and 4.6 respectively. 

INCORE_INTS_BUFFER 
 Controls the size of in-core integral storage buffer 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  2,000,000 words (1 word = 8 bytes) 
 OPTIONS: 
  User defined size; hardware dependent. 
 
DIRECT_SCF 
 Controls direct SCF 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  Determined by program 
 OPTIONS: 
  TRUE   Forces direct SCF 
  FALSE   Do not use direct SCF 
 RECOMMENDATION: 
  Use default; direct SCF switches off in-core integrals 
 
METECO 
 Sets the threshold criteria for discarding shell-pairs 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  2 Discard shell-pairs below 10-THRESH 
 OPTIONS: 
  1 Discard shell-pairs fours orders of magnitude below machine 

precision 
  2 Discard shell-pairs below 10-THRESH 
 RECOMMENDATION: 
  Use default 
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SCF_PRINT 
 Controls level of output from SCF procedure to Q-Chem output file 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Minimal, concise, useful and necessary output 
 OPTIONS: 
  0 Minimal, concise, useful and necessary output 
  1 Level 0 plus component breakdown of SCF electronic energy 
  2 Level 1 plus density, Fock and MO matrices on each cycle 
  3 Level 2 plus two-electron Fock matrix components (Coulomb, HF 

exchange and DFT exchange-correlation matrices) on each cycle 
 RECOMMENDATIONS: 

Proceed with care; can result in extremely large output files at level 2 or 
higher.  These levels are primarily for program debugging. 

 
SCF_FINAL_PRINT 
 Controls level of output from SCF procedure to Q-Chem output file at the end of 

the SCF 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 No extra print out 
 OPTIONS: 
  0 No extra print out 
  1 Orbital Energies only 
  2 Level 1 plus MOs 

3 Level 2 plus Fock and density matrices 
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4.2.4 EXAMPLES 

Provided below are examples of Q-Chem input files to run ground state, Hartree-Fock 
single point energy calculations. See the appendix for more examples of Q-Chem input 
files. 

$molecule 
0 1 
O 
H1 O OH 
H2 O OH H1 HOH 
 
OH = 1.2 
HOH = 120.0 
$end 
 
$rem 
JOBTYPE  SP  Single Point energy 
EXCHANGE  HF  Exact HF exchange 
CORRELATION None  No correlation 
BASIS  STO-3G Basis set 
$end 
 
$comment 
HF/STO-3G water single point calculation 
$end 

Example 4.1 Example Q-Chem input for a single point energy calculation on water. 
Note that the declaration of the single point $rem variable and level of 
theory to treat correlation are redundant because they are the same as the 
Q-Chem defaults. 
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$molecule 
0,2 
3 
$end 
 
$rem 
EXCHANGE HF  Hartree-Fock 
BASIS 6-311G Basis set 
$end 

Example 4.2 UHF/6-311G calculation on the Lithium atom. Note that correlation and 
the job type were not indicated because Q-Chem defaults automatically 
to no correlation and single point energies. Note also that, since the 
number of alpha and beta electron differ, MOs default to an unrestricted 
formalism. 

 
$molecule 
0,2 
3 
$end 
 
$rem 
EXCHANGE  HF  Hartree-Fock 
UNRESTRICTED FALSE Restricted MOs 
BASIS  6-311G Basis set 
$end 

Example 4.3 ROHF/6-311G calculation on the Lithium atom. Note again that 
correlation and the job type need not be indicated. 

4.2.5 SYMMETRY 

Symmetry is a powerful branch of mathematics and is often exploited in quantum 
chemistry, both to reduce the computational workload and to classify the final results 
obtained [10,11,12]. Q-Chem is able to determine the point group symmetry of the 
molecular nuclei and, on competition of the SCF procedure, classify the symmetry of 
molecular orbitals, and provide symmetry decomposition of kinetic and nuclear attraction 
energy (see Chapter 10). 

Molecular systems possessing point group symmetry offer the possibility of large savings 
of computational time, by avoiding calculations of integrals which are equivalent. i.e., 
those integrals which can be mapped on to one another under one of the symmetry 
operations of the molecular point group. 
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The Q-Chem default is to use symmetry to reduce computational time, when possible. 
Some algorithms, such as the CFMM, do not yet have symmetry eff iciencies 
implemented and these cases the symmetry flag ($rem variable SYMMETRY) is ignored. 

SYMMETRY 
 Controls the use of eff iciency through the use of point group symmetry 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  TRUE  Use symmetry when available 
 OPTIONS: 
  TRUE  Use symmetry when available 
  FALSE Do not use symmetry 
 RECOMMENDATION: 
  Use default unless benchmarking 

 

4.3 DENSITY FUNCTIONAL THEORY 

4.3.1 INTRODUCTION 

In recent years, Density Functional Theory [13,14,15] has emerged as an accurate 
alternative first-principles approach to quantum mechanical molecular investigations. 
DFT currently accounts for approximately 90% of all quantum chemical calculations 
being performed, not only because of its proven chemical accuracy, but also because of 
its relatively cheap computational expense. These two features suggest that DFT is li kely 
to remain a leading method in the quantum chemist’s toolkit well i nto the future. 
Q-Chem contains fast, eff icient and accurate algorithms for all popular density functional 
theories, which make calculations on quite large molecules possible and practical. 

DFT is primarily a theory of electronic ground state structures based on the electron 
density, ρ(r), as opposed to the many-electron wavefunction ( ),...,Ψ 1 Nr r . There are a 

number of distinct similarities and differences to traditional wavefunction approaches 
and modern DFT methodologies. Firstly, the essential building blocks of the many 
electron wavefunction are single-electron orbitals are directly analogous to the Kohn-
Sham (see below) orbitals in the current DFT framework. Secondly, both the electron 
density and the many-electron wavefunction tend to be constructed via a SCF approach 
that requires the construction of matrix elements which are remarkably and conveniently 
very similar. 

However, traditional approaches using the many electron wavefunction as a foundation 
must resort to a post-SCF calculation (Chapter 5) to incorporate correlation effects, 
whereas DFT approaches do not. Post-SCF methods, such as perturbation theory or 
coupled cluster theory are extremely expensive relative to the SCF procedure. On the 
other hand, the DFT approach is, in principle, exact, but in practice relies on modeling 
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the unknown exact exchange correlation energy functional. While more accurate forms 
of such functionals are constantly being developed, there is no systematic way to 
improve the functional to achieve an arbitrary level of accuracy. Thus, the traditional 
approaches offer the possibility of achieving an arbitrary level of accuracy, but can be 
computationally demanding, whereas DFT approaches offer a practical route but the 
theory is currently incomplete. 

4.3.2 KOHN-SHAM DENSITY FUNCTIONAL THEORY 

The Density Functional Theory by Hohenberg, Kohn and Sham [16,17] stems from the 
original work of Dirac [18], who found that the exchange energy of a uniform electron 
gas may be calculated exactly, knowing only the charge density. However, while the 
more traditional DFT constitutes a direct approach and the necessary equations contain 
only the electron density, difficulties associated with the kinetic energy functional 
obstructed the extension of DFT to anything more than a crude level of approximation. 
Kohn and Sham developed an indirect approach to the kinetic energy functional which 
transformed DFT into a practical tool for quantum chemical calculations. 

Within the Kohn-Sham formalism [17], the ground state electronic energy, E, can be 
written as 

 T V J XCE E E E E= + + +  (0.28) 

where ET is the kinetic energy, EV is the electron-nuclear interaction energy, EJ is the 
Coulomb self-interaction of the electron density ρ(r) and EXC is the exchange-correlation 
energy. Adopting an unrestricted format, the alpha and beta total electron densities can 
be written as 
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 (0.29) 

where nα and nβ are the number of alpha and beta electron respectively and, ψi are the 
Kohn-Sham orbitals. Thus, the total electron density is 

 ( ) ( ) ( )α βρ ρ ρ= +r r r  (0.30) 

which within a finite basis [19] is represented by 

 ( ) ( ) ( )TPµν µ ν
µν

ρ φ φ= ∑r r r  (0.31) 

The components of (0.28) can now be written as 
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 ( )( ), ( ),... dXCE f ρ ρ= ∇∫ r r r  (0.35) 

Minimizing E with respect to the unknown Kohn-Sham orbital coefficients yields a set of 
matrix equations exactly analogous to the UHF case 

 
α α α α

β β β β

=

=

F C SC

F C SC

εε

εε
 (0.36) 

where the Fock matrix elements are generalised to 

 
core XC

core XC

F H J F

F H J F

α α
µν µν µν µν

β β
µν µν µν µν

= + −

= + −
 (0.37) 

where XCF α
µν and XCF β

µν  are the exchange-correlation parts of the Fock matrices dependent 

on the exchange-correlation functional used. The Pople-Nesbet equations are obtained 
simply by allowing 

 XCF Kα α
µν µν=  (0.38) 

and similarly for the beta equation. 

Thus, the density and energy are obtained in a manner analogous to that for the Hartree-
Fock method. Initial guesses are made for the MO coefficients and an iterative process 
applied until self consistency is obtained. 
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4.3.3 EXCHANGE-CORRELATION FUNCTIONALS 

There are an increasing number of exchange and correlation functionals and hybrid DFT 
methods available to the quantum chemist, many of which are very effective. In short, 
there are two basic types of functionals: those based on the local spin density 
approximation (LSDA) and those based on generalized gradient approximations (GGA). 
Explicit definitions of each of these approximations vary amongst theoreticians and the 
reader is referred to the literature for further details. 

Q-Chem includes the following LSDA functionals: 

• Slater-Dirac (Exchange) [18] 
• Vokso-Wilk-Nusair (Correlation) [20] 
• Perdew-Zunger (Correlation) [21] 
• Wigner (Correlation) [22] 
 

the following GGA functionals 

• Becke88 (Exchange) [23] 
• Gill96 (Exchange) [24] 
• Gilbert-Gill99 (Exchange [25] 
• Lee-Yang-Parr (Correlation) [26] 
• Perdew86 (Correlation) [27] 
• GGA91 (Exchange and correlation) [28] 
 
In addition to the established density functionals, Q-Chem contains the recent Empirical 
Density Functional 1 (EDF1), developed by Adamson, Gill and Pople [29].  EDF1 is a 
combined exchange + correlation functional that is specifically adapted to yield good 
results with the relatively modest-sized 6-31+G* basis set, by direct fitting to 
thermochemical data.  It has the interesting feature that exact exchange mixing was not 
found to be helpful with a basis set of this size.  Furthermore, for a basis set of this size, 
the performance substantially exceeded the popular B3LYP functional, while the cost of 
the calculations is considerably lower because there is no need to evaluate exact 
(nonlocal) exchange.  We recommend consideration of EDF1 instead of either B3LYP or 
BLYP for density functional calculations on large molecules, for which basis sets larger 
than 6-31+G* may be too computationally demanding. 

Hybrid exchange-correlation functionals [30], whereby several different exchange and 
correlation functionals are combined linearly to form a new functional, have proven 
successful in a number of reported applications. However, since Hybrid functionals 
contain HF exchange they are more expensive that pure DFT functionals. Q-Chem has 
incorporated two of the most popular hybrid functionals, B3LYP [31] and B3PW91 [30], 
with the additional option for users to define their own hybrid functionals via the 
$xc_functional keyword (see user-defined functionals in Section 4.3.7, below). 
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Note: The hybrid functionals are not simply a pairing of an exchange and correlation 
functional, but are a combined exchange-correlation functional (i.e., B-LYP and 
B3LYP vary in the correlation contribution in addition to the exchange part). 

4.3.4 DFT NUMERICAL QUADRATURE 

In practical DFT calculations, the forms of the approximate exchange-correlation 
functionals (0.35) used are quite complicated, such that the required integrals involving 
the functionals generally cannot be evaluated analytically. Q-Chem evaluates these 
integrals through numerical quadrature directly applied to the exchange-correlation 
integrand (i.e., no fitting of the XC potential in an auxiliary basis is done).  Q-Chem 
provides a standard quadrature grid by default which is sufficient for most purposes. 

The quadrature approach in Q-Chem is generally similar to that found in many DFT 
programs. The multicenter XC integrals are first partitioned into "atomic" contributions 
using a nuclear weight function. Q-Chem uses the nuclear partitioning of Becke [32], 
though without the "atomic size adjustments". The atomic integrals are then evaluated 
through standard one-center numerical techniques. 

Thus, the exchange-correlation energy EXC (0.35) is obtained as 

 ( )XC Ai Ai
A i

E w f= ∑∑ r  (0.39) 

where the first summation is over the atoms and the second is over the numerical 
quadrature grid points for the current atom. The f function is the exchange-correlation 
functional. The wAi are the quadrature weights, and the grid points rAi are given by 

 Ai A i= +r R r  (0.40) 

where RA is the position of nucleus A, with the ri defining a suitable one-centre 
integration grid, which is independent of the nuclear configuration. 

The single-centre integrations are further separated into radial and angular integrations. 
The radial part is treated by the Euler-Maclaurin scheme (this method, proposed by 
Handy [33], is based on the Euler-Maclaurin formula for summation of a series). 

Angular quadrature rules may be characterized by their degree, which is the highest 
degree of spherical harmonics for which the formula is exact, and their efficiency, which 
is the number of spherical harmonics exactly integrated per degree of freedom in the 
formula. Q-Chem supports the following types of angular grids: 

• Lebedev 
These are specially constructed grids for quadrature on the surface of a sphere 
[34,35,36] based on the octahedral group. Lebedev grids of the following degrees 
are available: 
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• 3rd degree, 6 points 
• 5th degree, 18 points 
• 7th degree, 26 points 
• 9th degree, 38 points 
• 11th degree, 50 points 
• 15th degree, 86 points 
• 17th degree, 110 points 
• 19th degree, 146 points 
• 23rd degree, 194 points 
• 29th degree, 302 points 

 

Lebedev grids typically have efficiencies near one, with efficiencies greater than 
one in some cases. 

• Gauss-Legendre 
These are spherical product rules separating the two angular dimensions θ and φ. 
Integration in the θ dimension is carried out with a Gaussian quadrature rule 
derived from the Legendre polynomials (orthogonal on [-1,1] with weight 
function unity), while the φ integration is done with equally spaced points. 

A Gauss-Legendre grid is selected by specifying the total number of points, 2Nθ
2, 

to be used for the integration. This gives a grid with 2Nθ φ-points, Nθ θ−points, 
and a degree of 2Nθ-1. 

In contrast with Lebedev grids, Gauss-Legendre grids have efficiency of only 2/3 
(hence more Gauss-Legendre points are required to attain the same accuracy as 
Lebedev). However, since Gauss-Legendre grids of general degree are available, 
this is a convenient mechanism for achieving arbitrary accuracy in the angular 
integration if desired. 

The default grid used in Q-Chem is the SG-1 standard quadrature grid [37]. This grid 
was designed to yield the performance of a large, accurate quadrature grid, but with as 
few points as possible for the sake of computational efficiency. This is accomplished by 
reducing the number of angular points in regions where sophisticated angular quadrature 
is not necessary, such as near the nuclei where the charge density is nearly spherically 
symmetric, while retaining large numbers of angular points in the valence region where 
angular accuracy is critical. 

The SG-1 grid is derived in this fashion from a Euler-Maclaurin-Lebedev-(50,194) grid 
(i.e., 50 radial points, and 194 angular points per radial point). This grid has been found 
to give numerical integration errors of the order of 0.2 kcal/mol for medium-sized 
molecules, including particularly demanding test cases such as isomerization energies of 
alkanes. This error is deemed acceptable since it is significantly smaller than the accuracy 
typically achieved by quantum chemical methods. In SG-1 the total number of points is 
reduced to approximately 1/4 of that of the original EML-(50,194) grid, with SG-1 
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generally giving the same total energies as EML-(50,194) to within a few microhartrees 
(0.01 kcal/mol). Therefore, the SG-1 grid is relatively efficient while still maintaining the 
numerical accuracy necessary for chemical reliability in the majority of applications. 

4.3.5 CONSISTENCY CHECK AND CUTOFFS FOR NUMERICAL INTEGRATION 

Whenever Q-Chem calculates numerical density functional integrals, the electron density 
itself is also integrated numerically as a test on the quality of the quadrature formula 
used. The deviation of the numerical result from the number of electrons in the system is 
an indication of the accuracy of the other numerical integrals. If the relative error in the 
numerical electron count reaches 0.01%, a warning is printed; this is an indication that 
the numerical XC results may not be reliable. If the warning appears at the first SCF 
cycle, it is probably not serious, because the initial-guess density matrix is sometimes not 
idempotent, as is the case with the SAD guess and the density matrix taken from a 
different geometry in a geometry optimization. If that is the case, the problem will be 
corrected as the idempotency is restored in later cycles. On the other hand, if the warning 
is persistent to the end of SCF iterations, then either a finer grid is needed, or choose an 
alternative method for generating the initial guess. 

Users should be aware, however, of the potential flaws that have been discoverd in some 
of the grids currently in use. Jarecki and Davidson [38], for example, have recently 
shown that correctly integrating the density is a necessary, but not sufficient, test of grid 
quality. 

By default, Q-Chem will estimate the magnitude of various XC contributions on the grid 
and eliminate those determined to be numerically insignificant. Q-Chem uses specially 
developed cutoff procedures which permits evaluation of the XC energy and potential in 
only O(N) work for large molecules, where N is the size of the system. This is a 
significant improvement over the formal O(N3) scaling of the XC cost, and is critical in 
enabling DFT calculations to be carried out on very large systems. In very rare cases, 
however, the default cutoff scheme can be too aggressive, eliminating contributions that 
should be retained; this is almost always signalled by an inaccurate numerical density 
integral. An example of when this could occur is in calculating anions with multiple sets 
of diffuse functions in the basis. As mentioned above, when an inaccurate electron count 
is obtained, it maybe possible to remedy the problem by increasing the size of the 
quadrature grid. 

Finally we note that early implementations of quadrature-based Kohn-Sham DFT 
employing standard basis sets were plagued by lack of rotational invariance. That is, 
rotation of the system yielded a significantly energy change. Clearly, such behavior is 
highly undesirable.  Johnson et al. rectified the problem of rotational invariance by 
completing the specification of the grid procedure [39] to ensure that the computed XC 
energy is the same for any orientation of the molecule in any Cartesian coordinate 
system. 
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4.3.6 BASIC DFT JOB CONTROL 

3 $rem variables are required to run a DFT job: EXCHANGE, CORRELATION and 
BASIS.  In addition, all of the basic input options discussed for Hartree-Fock calculations 
in Section 4.2.2, and the extended options discussed in Section 4.2.3 are all valid for 
DFT calculations.  Below we list only the basic DFT-specific options. 

EXCHANGE 
 Specifies the exchange functional or exchange-correlation functional for hybrids 
 VARIABLE: 
  STRING 
 DEFAULT: 
  No default exchange functional 
 OPTIONS: 
  HF exact Hartree-Fock 
  Slater, S Slater 
  Becke, B  Becke 
  Gill96, Gill Gill 1996 
  GG99 Gilbert and Gill, 1999 
  Becke(EDF1), B(EDF1) Becke (EDF1) 
  PW91, PW Perdew 
  B3PW91, Becke3PW91, B3P B3PW91 hybrid 
  B3LYP, Becke3LYP B3LYP 
  B3LYP5 original B3LYP (using VWN5) 
  EDF1 EDF1 
  General, Gen   User defined combination of K, X  

  and C (refer next section) 
 
CORRELATION 
 Specifies the correlation functional 
 VARIABLE: 
  STRING 
 DEFAULT: 
  None   No correlation 
 OPTIONS: 
  None   No correlation 
  VWN   Vosko-Wilk-Nusair parameterization #5 
  LYP   Lee-Yang-Parr (LYP) 
  PW91, PW  GGA91 (Perdew) 
  LYP(EDF1)  LYP(EDF1) parameterization 
  Perdew86, P86 Perdew 1986 
  PZ81, PZ  Perdew-Zunger 1981 
  Wigner     Wigner 
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XC_GRID 
 Specifies the type of grid to use for DFT calculations. 
 DEFAULT: 
  1 SG-1 
 OPTIONS: 
  1 SG-1 
  2 Low Quality 
  mn The first six integers correspond to m radial points and the second 

six integers correspond to n angular points where possible numbers 
of Lebedev angular points are listed in section 4.7.2 

  -mn The first six integers correspond to m radial points and the second 
six integers correspond to n angular points where the number of 
Gauss-Legendre angular points n = 2Nθ

2 
 RECOMMENDATION: 
  SG-1 or larger. 
 

4.3.7 USER-DEFINED DENSITY FUNCTIONALS 

The format for entering user-defined exchange-correlation density functionals is one line 
for each component of the functional. Each line requires three variables: the first defines 
whether the component is an exchange or correlation functional by declaring an X or C, 
respectively. The second variable is the symbolic representation of the functional as used 
for the EXCHANGE and CORRELATION $rem variables. The final variable is a real 
number corresponding to the contribution of the component to the functional. Hartree-
Fock exchange contributions (required for hybrid density functionals) can be entered 
using only two variables (K, for HF exchange) followed by a real number. 

$XC_functional 
X exchange_symbol  coefficient 
X exchange_symbol  coefficient 
. 
. 
. 
C correlation_symbol  coefficient 
C correlation_symbol  coefficient 
. 
. 
. 
K      coefficient 
$end 
 

Notes: (1) Coefficients are real. 
 (2) A user-defined functional does not require all X, C and K components. 
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4.3.8 EXAMPLES 

$comment 
B-LYP/STO-3G water single point calculation 
$end 
 
$molecule 
0 1 
O 
H1 O OH 
H2 O OH H1 HOH 
 
OH = 1.2 
HOH = 120.0 
$end 
 
$rem 
EXCHANGE  Becke  Becke88 exchange 
CORRELATION LYP   LYP correlation 
BASIS  STO-3G  Basis set 
$end 

Example 4.4 Example Q-Chem input for a DFT single point energy calculation on 
water 

 
$comment 
EDF1/6-31+G* water single point calculation 
$end 
 
$molecule 
0 1 
O 
H1 O OH 
H2 O OH H1 HOH 
 
OH = 1.2 
HOH = 120.0 
$end 
 
$rem 
EXCHANGE  EDF1  EDF1 exchange-correlation 
BASIS  6-31+G* Basis set 
$end 

Example 4.5 Example Q-Chem input for a DFT single point energy calculation on 
water 

4.4 LARGE MOLECULES AND LINEAR SCALING METHODS 
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4.4.1 INTRODUCTION 

Construction of the effective Hamiltonian, or Fock matrix, has traditionally been the rate-
determining step in self-consistent field calculations, due primarily to the cost of two-
electron integral evaluation, even with the efficient methods available in Q-Chem (see 
AOINTS appendix).  However, for large enough molecules, significant speedups are 
possible by employing recently developed linear-scaling methods for each of the 
nonlinear terms that can arise.  Linear scaling means that if the molecule size is doubled, 
then the computational effort likewise only doubles.  There are three computationally 
significant terms: 

1) Electron-electron Coulomb interactions, for which Q-Chem incorporates the 
Continuous Fast Multipole Method (CFMM) discussed in Sec. 4.4.2 

2) Exact exchange interactions, which arise in hybrid DFT calculations and Hartree-
Fock calculations, for which Q-Chem incorporates the LinK method discussed in 
Section 4.4.3 below. 

3) Numerical integration of the exchange and correlation functionals in DFT 
calculations, which we have already discussed in Section 4.3.4 

 
Q-Chem supports energies and efficient analytical gradients for all three of these high 
performance methods to permit structure optimization of large molecules, as well as 
relative energy evaluation.  Note that analytical second derivatives of SCF energies do 
not exploit these methods at present. 

For the most part, these methods are switched on automatically as the program chooses, 
on the basis of whether they offer a significant speedup for the job at hand.  Nevertheless 
it is useful to have a general idea of the key concepts behind each of these algorithms, 
and what input options are necessary to control them.  That is the primary purpose of this 
section, in addition to briefly describing 2 more conventional methods for reducing 
computer time in large calculations in Section 4.4.4. 

There is one other computationally significant step in SCF calculations, and that is 
diagonalization of the Fock matrix, once it has been constructed.  This step scales with 
the cube of molecular size (or basis set size), with a small prefactor.  So, for large enough 
SCF calculations (very roughly in the vicinity of 2000 basis functions and larger), 
diagonalization becomes the rate determining step.  The cost of cubic scaling with a 
small prefactor at this point exceeds the cost of the linear scaling Fock build, which has a 
very large prefactor, and the gap rapidly widens thereafter.  This sets an effective upper 
limit on the size of SCF calculation for which Q-Chem is useful at several thousand basis 
functions. 

4.4.2 CONTINUOUS FAST MULTIPOLE METHOD (CFMM) 

The quantum chemical Coulomb problem, perhaps better known as the DFT bottleneck, 
has been at the forefront of many research efforts throughout the 1990s. The quadratic 
computational scaling behavior conventionally seen in the construction of the Coulomb 
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matrix in DFT or HF calculations has prevented the application of ab initio methods to 
molecules containing many hundreds of atoms. Q-Chem, Inc., in collaboration with 
White and Head-Gordon at the University of Cali fornia at Berkeley, and Gill at Massey 
University in New Zealand, were the first to develop the generalization of Greengard’s 
Fast Multipole Method (FMM) [40] to Continuous charged matter distributions in the 
form of the CFMM, which is the first linear scaling algorithm for DFT calculations. This 
initial breakthrough has since lead to an increasing number of linear scaling alternatives 
and analogues, but for Coulomb interactions, the CFMM remains state of the art.  There 
are two computationally intensive contributions to the Coulomb interactions which we 
discuss in turn: 

• Long-range interactions, which are treated by the CFMM 

• Short-range interactions, corresponding to overlapping charge distributions, which 
are treated by a specialized “J-matrix engine” together with Q-Chem’s state-of-the art 
two-electron integral methods. 

The Continuous Fast Multipole Method was the first implemented linear scaling 
algorithm for the construction of the J matrix. In collaboration with Q-Chem, Inc., Dr. 
Chris White began the development of the CFMM by more eff iciently deriving [41] the 
original Fast Multipole Method before generalizing to CFMM [42]. The generalization 
applied by White et al. allowed the principles underlying the success of the FMM to be 
applied to arbitrary (subject to constraints in evaluating the related integrals) continuous, 
but localized, matter distributions. White and co-workers further improved the 
underlying CFMM algorithm [43,44] then implemented it eff iciently [45], achieving 
performance that is an order of magnitude faster than some competing implementations. 

The success of the CFMM follows similarly with that of the FMM, in that the charge 
system is subdivided into a hierarchy of boxes. Local charge distributions are then 
systematically organized into multipole representations so that each distribution interacts 
with local expansions of the potential due to all distant charge distributions. Local and 
distant distributions are distinguished by a well -separated (WS) index, which is the 
number of boxes that must separate two collections of charges before they may be 
considered distant and can interact through multipole expansions; near-field interactions 
must be calculated directly. In the CFMM each distribution is given its own WS index 
and is sorted on the basis of the WS index, and the position of their space centers. The 
implementation in Q-Chem has allowed the eff iciency gains of contracted basis functions 
to be maintained. 

The CFMM algorithm can be summarized in five steps: 

1. Form and translate multipoles. 
2. Convert multipoles to local Taylor expansions. 
3. Translate Taylor information to the lowest level. 
4. Evaluate Taylor expansions to obtain the far-field potential. 
5. Perform direct interactions between overlapping distributions. 
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Accuracy can be carefully controlled by due consideration of tree depth, truncation of the 
multipole expansion and the definition of the extent of charge distributions in accordance 
with a rigorous mathematical error bound. As a rough guide, 10 poles are adequate for 
single point energy calculations, while 25 poles yield suff icient accuracy for gradient 
calculations. Subdivision of boxes to yield a one-dimensional length of about 8 boxes 
works quite well for systems of up to about one hundred atoms. Larger molecular 
systems, or ones which are extended along one dimension, will benefit from an increase 
in this number. The program automatically selects an appropriate number of boxes by 
default. 

For the evaluation of the remaining short-range interactions, Q-Chem incorporates 
eff icient J-matrix engines, originated by White and Head-Gordon [46].  These are 
analytically exact methods that are based on standard two-electron integral methods, but 
with an interesting twist.  If one knows that the two-electron integrals are going to be 
summed into a Coulomb matrix, one can ask whether they are in fact the most eff icient 
intermediates for this specific task.  Or, can one instead find a more compact and 
computationally eff icient set of intermediates by folding the density matrix into the 
recurrence relations for the two-electron integrals.  For integrals that are not highly 
contracted (i.e. are not linear combinations of more than a few Gaussians), the answer is 
a dramatic yes.  This is the basis of the J-matrix approach, and Q-Chem includes the 
latest algorithm developed by Yihan Shao working with Martin Head-Gordon at 
Berkeley for this purpose.  Shao’s J engine is employed for both energies [47] and forces 
[48] and gives substantial speedups relative to the use of two-electron integrals without 
any approximation (roughly a factor of 10 (energies) and 30 (forces) at the level of an 
uncontracted dddd shell quartet, and increasing with angular momentum).  Its use is 
automatically selected for integrals with low degrees of contraction, while regular 
integrals are employed when the degree of contraction is high, following the state of the 
art PRISM approach of Gill and coworkers [49]. 

The CFMM is controlled by the following input parameters: 

CFMM_ORDER 
 Controls the order of the multipole expansions in CFMM calculation 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  15 For single point SCF accuracy 
  25 For tighter convergence 
 OPTIONS: 
  n Use multipole expansions of order n 
 RECOMMENDATION: 
  Use default 
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GRAIN 
 Controls the number of lowest-level boxes in one dimension for CFMM 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  -1 Program decides best value, turning on CFMM when useful 
 OPTIONS: 
  -1 Program decides best value, turning on CFMM when useful 
  1 Do not use CFMM 
  n≥8 Use CFMM with n lowest-level boxes in one dimension 
 RECOMMENDATIONS: 
  This is an expert option; either use the default, or use a value of 1 if 

CFMM is not desired 
 

4.4.3 LINEAR SCALING EXCHANGE (LINK) MATRIX EVALUATION 

Hartree-Fock calculations and the popular hybrid density functionals such as B3LYP also 
require two-electron integrals to evaluate the exchange energy associated with a single 
determinant.  There is no useful multipole expansion for the exchange energy, because 
the bra and ket of the two-electron integral are coupled by the density matrix, which 
carries the effect of exchange.  Fortunately, density matrix elements decay exponentially 
with distance for systems that have a HOMO-LUMO gap [50].  The better the insulator, 
the more localized the electronic structure, and the faster the rate of exponential decay.  
Therefore, for insulators, there are only a linear number of numerically significant 
contributions to the exchange energy.  With intelligent numerical thresholding, it is 
possible to rigorously evaluate the exchange matrix in linear scaling effort.  For this 
purpose, Q-Chem contains the linear scaling K (LinK) method [51] to evaluate both 
exchange energies and their gradients [52] in linear scaling effort (provided the density 
matrix is highly sparse).  The LinK method essentially reduces to the conventional direct 
SCF method for exchange in the small molecule limit (by adding no significant 
overhead), while yielding large speedups for (very) large systems where the density 
matrix is indeed highly sparse.  For full details, we refer the reader to the original papers 
[51,52].  LinK can be explicitly requested by the following option (although Q-Chem 
automatically switches it on when the program believes it is the preferable algorithm). 
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LIN_K 
 Controls whether linear scaling evaluation of exact exchange (LinK) is used. 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  Program chooses, switching on LinK whenever CFMM is used. 
 OPTIONS: 
  TRUE  Use LinK 
  FALSE  Do not use LinK  
 RECOMMENDATION: 
  Use for HF and hybrid DFT calculations with large numbers of atoms 
 

4.4.4 INCREMENTAL AND VARIABLE THRESH FOCK MATRIX BUILDING 

The use of a variable integral threshold, operating for the first few cycles of an SCF, is 
justifiable on the basis that the MO coefficients are usually of poor quality in these 
cycles. In Q-Chem, the integrals in the first iteration are calculated at a threshold of 10-6 
(for an anticipated final integral threshold greater than, or equal to 10-6) to ensure the 
error in the first iteration is solely sourced from the poor MO guess. Following this, the 
integral thresh-hold used is computed as 

 _ _tmp thresh varthresh DIIS error= ×  (0.41) 

where the DIIS_error is that calculated from the previous cycle, varthresh is the variable 
threshold set by the program (by default) and tmp_thresh is the temporary threshold used 
for integral evaluation. Each cycle requires recalculation of all integrals. The variable 
integral threshold procedure has the greatest impact in early SCF cycles. 

In an incremental Fock matrix build [53], F is computed recursively as 

 1
2

− − −= + ∆ − ∆m m 1 m 1 m 1F F J K  (0.42) 

where m is the SCF cycle, and ∆Jm and ∆Km are computed using the difference density 

 −∆ = −m m m 1P P P  (0.43) 

Using Schwartz integrals and elements of the difference density, Q-Chem is able to 
determine at each iteration which ERIs are required, and if necessary, recalculated. As 
the SCF nears convergence, ∆Pm becomes sparse and the number of ERIs that need to be 
recalculated declines dramatically, saving the user large amounts of computational time. 

Incremental Fock matrix builds and variable thresholds are only used when the SCF is 
carried out using the direct SCF algorithm and are clearly complementary algorithms.  
These options are controlled by the following input parameters, which are only used with 
direct SCF calculations. 
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INCFOCK 
 Iteration number after which the incremental Fock matrix algorithm is initiated 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1 Start INCFOCK after iteration number 1 
 OPTIONS: 
  User-defined (0 switches INCFOCK off) 
 RECOMMENDATIONS: 
   May be necessary to allow several iterations before switching on 

INCFOCK 
 
VARTHRESH 
 Controls the temporary integral cut-off threshold. 
 tmp_thresh = 10-VARTHRESH X DIIS_error 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 (FALSE) 
 OPTIONS: 
  User-defined threshold 
 RECOMMENDATIONS: 

3 has been found to be a practical level, and can slightly speed up SCF 
evaluation. 

 

4.4.5 EXAMPLES 

$comment 
HF/3-21G single point calculation on a large molecule 
read in the molecular coordinates from file 
$end 
 
$molecule 
READ dna.inp 
$end 
 
$rem 
EXCHANGE  HF  HF exchange 
BASIS  3-21G Basis set 
LIN_K  TRUE  Calculate K using LinK 
$end 

Example 4.6 Example Q-Chem input for a large single point energy calculation.  The 
CFMM is switched on automatically when LinK is requested. 
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$comment 
HF/3-21G single point calculation on a large molecule 
read in the molecular coordinates from file 
$end 
 
$molecule 
READ dna.inp 
$end 
 
$rem 
EXCHANGE  HF  HF exchange 
BASIS  3-21G Basis set 
INCFOCK  5  Incremental Fock after 5 cycles 
VARTHRESH  3  1.0d-03 variable threshold 
$end 

Example 4.7 Example Q-Chem input for a large single point energy calculation.  This 
would be appropriate for a medium-sized molecule, but for truly large 
calculations, the CFMM and LinK algorithms are far more efficient. 
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4.5 SCF INITIAL GUESS 

4.5.1 INTRODUCTION 

The Roothaan-Hall and Pople-Nesbet equations of SCF theory are non-linear in the 
molecular orbital coeff icients. Like many mathematical problems involving non-linear 
equations, prior to the application of a technique to search for a numerical solution, an 
initial guess for the solution must be generated. If the guess is poor, the iterative 
procedure applied to determine the numerical solutions may converge very slowly, 
requiring a large number of iterations, or at worst, the procedure may diverge. 

Thus, in an ab initio SCF procedure, the quality of the initial guess is of utmost 
importance for (at least) two main reasons: 

(1) To ensure that the SCF converges to an appropriate ground state.  Often SCF 
calculations can converge to different local minima in wavefunction space, 
depending upon which part of that space the initial guess places the system in. 

(2) When considering jobs with many basis functions requiring the recalculation of 
ERIs at each iteration, using a good initial guess that is close to the final solution 
can reduce the total job time significantly by decreasing the number of SCF 
iterations. 

For these reasons, sooner or later most users will find it helpful to have some 
understanding of the different options available for customizing the initial guess.  
Q-Chem currently offers five options for the initial guess: 

• Superposition of Atomic Density (SAD) 
• Core Hamiltonian 
• Generalized Wolfsberg-Helmholtz (GWH) 
• Reading previously obtained MOs from disk. 
• Basis set projection 
 
The first 3 of these guesses are built -in, and are briefly described in Section 4.5.2.  The 
option of reading MO’s from disk is described in Section 4.5.3.  The initial guess MO’s 
can be modified, either by mixing, or altering the order of occupation.  These options are 
discussed in Section 4.5.4.  Finally, Q-Chem’s novel basis set projection method is 
discussed in Section 4.5.5. 

4.5.2 SIMPLE INITIAL GUESSES 

There are three simple initial guesses available in Q-Chem.  While they are all simple, 
they are by no means equal in quality, as we discuss below. 

(1) Superposition of Atomic Densities (SAD):  The SAD guess is almost trivially 
constructed by summing together atomic densities that have been spherically 
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averaged to yield a trial density matrix.  The SAD guess is far superior to the 
other two options below, particularly when large basis sets and/or large molecules 
are employed.  There are three issues associated with the SAD guess to be aware 
of: 

• No molecular orbitals are obtained, which means that SCF algorithms 
requiring orbitals (the direct minimization methods discussed in Section 
4.6) cannot directly use the SAD guess, and, 

• The SAD guess is not available for general (read-in) basis sets.  All 
internal basis sets support the SAD guess. 

• The SAD guess is not idempotent and thus requires at least two SCF 
iterations to ensure proper SCF convergence (idempotency of the density). 

(2) Generalized Wolfsberg-Helmholtz (GWH):  The GWH guess procedure [54] 
uses a combination of the overlap matrix elements (0.12), and the diagonal 
elements of the Core Hamiltonian matrix (0.18).  This initial guess is most 
satisfactory in small basis sets for small molecules.  It is constructed according to 
the relation given below, where cx is a constant. 

 ( ) 2xH c S H Hµυ µυ µµ υυ= +     (0.44) 

(3) Core Hamiltonian:  The core Hamiltonian guess simply obtains the guess MO 
coefficients by diagonalizing the core Hamiltonian matrix (0.18). This approach 
works best with small basis sets, and degrades as both the molecule size and the 
basis set size are increased. 

The selection of these choices (or whether to read in the orbitals) is controlled by the 
following $rem variables: 
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SCF_GUESS 
 Specifies the initial guess procedure to use for the SCF 
 VARIABLE: 
  STRING 
 DEFAULT: 
  SAD  Superposition of atomic density (available only with 

standard basis sets) 
  GWH  For ROHF where a set of orbitals are required. 
 OPTIONS: 
  CORE  Diagonalize core Hamiltonian 
  SAD  Superposition of atomic density 
  GWH  Apply generalized Wolfsberg-Helmholtz approximation 
  READ  Read previous MOs from disk 
 RECOMMENDATION: 
  SAD guess for standard basis sets. For general basis sets, it is best to use 

the BASIS2 REM.  Alternatively, try the GWH or core Hamiltonian guess.  
For ROHF it can be useful to READ guesses from an SCF calculation on 
the corresponding cation or anion. 

 

SCF_GUESS_ALWAYS 
 Switch to force the regeneration of a new initial guess for each series of SCF 

iterations (for use in geometry optimization) 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False Do not generate a new guess for each series of SCF 

iterations in an optimization; use MOs from the previous 
SCF calculation for the guess, if available 

 OPTIONS: 
  False Do not generate a new guess for each series of SCF 

iterations in an optimization; use MOs from the previous 
SCF calculation for the guess, if available 

  True Generate a new guess for each series of SCF iterations in a 
geometry optimization 

 

4.5.3 READING MOS FROM DISK 

There are two methods by which MO coefficients can be used from a previous job by 
reading them from disk: 

1. Running two independent jobs sequentially invoking qchem with three 
command line variables: 

 
localhost-1> qchem job1.in job1.out save 
localhost-2> qchem job2.in job2.out save 
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Notes: (1) The $rem variable SCF_GUESS must be set to READ in job2.in. 
 (2) Scratch files remain in $QCSCRATCH/save on exit. 
 
2. Running a batch job where two jobs are placed into a single input file separated 

by the string “@@@” on a single line. 
 
Notes: (1) The $rem variable SCF_GUESS must be set to READ in the second job of 

the batch file. 
 (2) A third qchem command line variable is not necessary. 
 (3) As for the SAD guess, Q-Chem requires at least two SCF cycles to ensure 

proper SCF convergence (idempotency of the density). 
 

Most important note:  It is up to the user to make sure that the basis sets match between 
the 2 jobs.  There is no internal checking for this, although the occupied orbitals are 
reorthogonalized in the current basis after being read in.  If you want to project from a 
smaller basis into a larger basis, consult section 4.5.5 

4.5.4 MODIFYING THE OCCUPIED MOLECULAR ORBITALS 

It is sometimes useful for the occupied guess orbitals to be other than the lowest Nalpha 
(or Nbeta) orbitals.  Reasons why one may need to do this include: 

• To converge to a state of different symmetry or orbital occupation 

• To break spatial symmetry 

• To break spin symmetry, as in unrestricted calculations on molecules with an even 
number of electrons. 

There are 2 mechanisms for modifying a set of guess orbitals: either by 
SCF_GUESS_MIX, or by specifying the orbitals to occupy.  Q-Chem users may define 
the occupied guess orbitals using the $occupied keyword. Occupied guess orbitals are 
defined by listing the alpha orbitals to be occupied on the first line and beta on the 
second. The need for orbitals renders this option incompatible with the SAD guess. 
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$occupied 
αi αj αk αl ... {alpha guess orbitals to be occupied} 
βl βm βn βo ... {beta guess orbitals to be occupied} 
$end 

Figure 4.1 Format for modifying occupied guess orbitals. 

 
The other $rem variables related to altering the orbital occupancies are: 

 

SCF_GUESS_PRINT 
 Controls printing of guess MOs, Fock and density matrices 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Do not print guesses 
 OPTIONS: 
  0 Do not print guesses 
 SAD 
  1 Atomic density matrics and molecular matrix 
  2 Level 1 plus density matrices 
 CORE and GWH 
  1 No extra output 
  2 Level 1 plus Fock and density matrices and, MO coefficients and 

eigenvalues 
 READ 
  1 No extra output 
  2 Level 1 plus density matrices, MO coefficients and eigenvalues 
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SCF_GUESS_MIX 
 Controls mixing of LUMO and HOMO to break symmetry in the initial guess.  

For unrestricted jobs, the mixing is performed only for the alpha orbitals. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 (FALSE) Do not mix HOMO and LUMO in SCF guess 
 OPTIONS: 
  0 (FALSE) Do not mix HOMO and LUMO in SCF guess 
  1 (TRUE) Add 10% of LUMO to HOMO to break symmetry 
  n Add n × 10% of LUMO to HOMO (0 < n < 10) 
 RECOMMENDATION: 

When performing unrestricted calculations on molecules with an even 
number of electrons, it is often necessary to break alpha-beta symmetry in 
the initial guess with this option, or by specifying input for $occupied. 
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4.5.5 BASIS SET PROJECTION 

Q-Chem also includes a novel basis set projection method developed by Dr. Jing Kong of 
Q-Chem.  It permits a calculation in a large basis set to bootstrap itself up via a 
calculation in a small basis set that is automatically spawned when the user requests this 
option.  When basis set projection is requested (by providing a valid small basis for 
BASIS2), the program executes the following steps: 

(1) A simple DFT calculation is performed in the small basis, BASIS2, yielding a 
converged density matrix in this basis. 

(2) The large basis set SCF calculation (with different values of EXCHANGE and 
CORRELATION set by the input) begins by constructing the DFT Fock operator 
in the large basis but with the density matrix obtained from the small basis set. 

(3) By diagonalizing this matrix, an accurate initial guess for the density matrix in the 
large basis is obtained, and the target SCF calculation commences. 

Basis set projection is a very effective option for general basis sets, where the SAD guess 
is not available.  In detail, this initial guess is controlled by the following $rem variables: 
 
BASIS2 
 Sets the small basis set to use in basis set projection 
 VARIABLE: 
  STRING 
 DEFAULT: 
  No second basis set default 
 OPTIONS: 
  Symbol  Use standard basis sets as per Chapter 7 
 RECOMMENDATIONS: 
  BASIS2 should be smaller than BASIS 
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4.5.6 EXAMPLES 

$molecule 
0 1 
O 
H 1 r 
H 1 r 2 a 
 
r 0.9 
a 104.0 
$end 
 
$rem 
   exchange            hf 
   correlation         mp2 
   basis               general 
   basis2              sto-3g 
$end 
 
$basis 
O    0 
S    3    1.000000 
   3.22037000E+02    5.92394000E-02 
   4.84308000E+01    3.51500000E-01 
   1.04206000E+01    7.07658000E-01 
SP   2    1.000000 
   7.40294000E+00   -4.04453000E-01   2.44586000E-01 
   1.57620000E+00    1.22156000E+00   8.53955000E-01 
SP   1    1.000000 
   3.73684000E-01    1.00000000E+00   1.00000000E+00 
SP   1    1.000000 
   8.45000000E-02    1.00000000E+00   1.00000000E+00 
**** 
H    0 
S    2    1.000000 
   5.44717800E+00    1.56285000E-01 
   8.24547000E-01    9.04691000E-01 
S    1    1.000000 
   1.83192000E-01    1.00000000E+00 
**** 
$end 
 

Example 4.8 Input where basis set projection is used to generate a good initial guess 
for a calculation employing a general basis set, for which the default 
initial guess is not available. 
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$comment 
   OH radical, part 1.  Do 1 iteration of cation orbitals. 
$end 
 
$molecule 
   1 1 
   o    0.0    0.0    0.0 
   h    0.0    0.0    1.0 
$end 
 
$rem 
   basis             =  6-311++G(2df) 
   exchange          =  hf 
   max_scf_cycles    =  1 
   thresh            =  10 
$end 
 
@@@ 
$comment 
   OH radical, part 2.  Read cation orbitals, do the radical 
$end 
 
$molecule 
   0 2 
   o    0.0    0.0    0.0 
   h    0.0    0.0    1.0 
$end 
 
$rem 
   basis             =  6-311++G(2df) 
   exchange          =  hf 
   unrestricted      =  false 
   scf_algorithm     =  dm 
   scf_convergence   =  7 
   scf_guess         =  read 
   thresh            =  10 
end 
 
 

Example 4.9 Input for an ROHF calculation on the OH radical.  One SCF cycle is 
initially performed on the cation, to get reasonably good initial guess 
orbitals, which are then read in as the guess for the radical.  This avoids 
the use of Q-Chem’s default GWH guess for ROHF, which is often poor. 
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$molecule 
   0    1 
   H    0.0    0.0    0.0 
   H    0.0    0.0  -10.0 
$end 
 
$rem 
   unrestricted    = true 
   exchange        = hf 
   basis           = 6-31g** 
   scf_algorithm   = diis_gdm 
   max_diis_cycles = 1 
   scf_guess       = gwh 
   scf_guess_mix   = 2 
$end 
 

Example 4.10 Input for an unrestricted HF calculation on H2 in the dissociation limit, 
showing the use of SCF_GUESS_MIX = 2 (corresponding to 20% of the 
alpha LUMO mixed with the alpha HOMO).  Geometric direct 
minimization with DIIS (see 4.6.4) is used to converge the SCF, together 
with MAX_DIIS_CYCLES = 1 (using the default value for 
MAX_DIIS_CYCLES, the DIIS procedure just oscillates). 

4.6 CONVERGING SCF CALCULATIONS 

4.6.1 INTRODUCTION 

As for any numerical optimization procedure, the rate of convergence of the SCF 
procedure is dependent on the initial guess, and on the algorithm used to step towards the 
stationary point. Q-Chem features a number of alternative SCF optimization algorithms, 
which are discussed in the following sections, along with the $rem variables that are used 
to control the calculations.  The main options are discussed in sections which follow, and 
are, in brief: 

• The highly successful DIIS procedures, which are the default. 

• The new geometric direct minimization (GDM) method, which is highly robust, and 
the recommended fall-back when DIIS fails.  It can also be invoked after a few initial 
interations with DIIS to improve the initial guess. 

• The older and less robust direct minimization method (DM), which is retained 
because it is the only method implemented for restricted open shell SCF.  As for 
GDM, it can also be invoked after a few DIIS iterations (except for RO jobs). 

• The maximum overlap method (MOM) which ensures that DIIS always occupies a 
continuous set of orbitals and does not oscillate between different occupancies. 
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4.6.2 BASIC CONVERGENCE CONTROL OPTIONS 

See also more detailed options in the following sections, and note that 
SCF_CONVERGENCE and THRESH must be set in a compatible manner. 

 
MAX_SCF_CYCLES 
 Controls the maximum number of SCF iterations permitted 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  50 
 OPTIONS: 
  User-defined 
 

SCF_ALGORITHM 
 Algorithm used for converging the SCF 
 VARIABLE: 
  STRING 
 DEFAULT: 
  DIIS Pulay DIIS 
 OPTIONS: 
  DIIS Pulay DIIS 
  DM Direct minimizer 
  DIIS_DM Uses DIIS initially, switching to direct minimizer 

for later iterations (See THRESH_DIIS_SWITCH, 
MAX_DIIS_CYCLES) 

  DIIS_GDM Use DIIS and then later switch to geometric direct 
minimization (See THRESH_DIIS_SWITCH, 
MAX_DIIS_CYCLES) 

  GDM Geometric Direct Minimization 
  ROOTHAAN Roothaan repeated diagonalization 
 RECOMMENDATION: 
  Use DIIS unless wanting ROHF, in which case direct minimization must 

be used.  If DIIS fails, DIIS_GDM is the recommended fall-back option. 
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SCF_CONVERGENCE 
 SCF is considered converged when the wavefunction error is less that 

10-SCF_CONVERGENCE.  Adjust the value of THRESH at the same time. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  5  For single point energy calculations 
  8  for geometry optimizations and vibrational analysis 
 OPTIONS: 
  User-defined 
 RECOMMENDATION: 

Tighter criteria for geometry optimization and vibration analysis.  Larger 
values provide more significant figures, at greater computational cost. 

 

4.6.3 DIRECT INVERSION IN THE ITERATIVE SUBSPACE (DIIS) 

The SCF implementation of the Direct Inversion in the Iterative Subspace (DIIS) method 
[55,56] uses the property of an SCF solution which requires the density matrix to 
commute with the Fock matrix 

 − =SPF FPS 0  (0.45) 

During the SCF cycles, prior to achieving self-consistency, it is possible to define an 
error vector ei, which is non-zero 

 i i i i i− =SP F F P S e  (0.46) 

where Pi is obtained from diagonalization of ˆ
iF , and 
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The DIIS coeff icients ck, are obtained by a least squares constrained minimisation of the 
error vectors, viz 
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where the constraint 

 1k
k

c =∑  (0.49) 

is imposed to yield a set of linear equations, of dimension (N+1) 
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Convergence criteria requires the largest element of the Nth error vector to be below a 
cutoff threshold, usually 10-5 for single point energies, often increased to 10-8 for 
optimizations and frequency calculations. 

The rate of convergence may be improved by restricting the number of previous Fock 
matrices (size of the DIIS subspace, $rem variable DIIS_SUBSPACE_SIZE) used for 
determining the DIIS coeff icients 
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where L is the size of the DIIS subspace. As the Fock matrix nears self-consistency the 
linear matrix equations (0.50) tend to become severely ill -conditioned and it is often 
necessary to reset the DIIS subspace (this is automatically carried out by the program). 

Finally, on a practical note, we observe that DIIS has a tendency to converge to global 
minima rather than local minima when employed for SCF calculations.  This seems to be 
because only at convergence is the density matrix in the DIIS iterations idempotent.  On 
the way to convergence, one is not on the “true” energy surface, and this seems to permit 
DIIS to “ tunnel” through barriers in wavefunction space.  This is usually a desirable 
property, and is the motivation for the options that permit initial DIIS iterations before 
switching to direct minimization to converge to the minimum in diff icult cases. 

The following $rem variables permit some customization of the DIIS iterations: 

DIIS_SUBSPACE_SIZE 
 Controls the size of the DIIS subspace during the SCF 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  15 
 OPTIONS: 
  User-defined 
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DIIS_PRINT 
 Controls the output from DIIS SCF optimization 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0  
 OPTIONS: 
  0  
  1 Chosen method and DIIS coefficients & solutions 
  2 Level 1 plus changes in multipole moments 
  3 Level 2 plus Multipole moments 
  4 Level 3 plus extrapolated Fock matrices 
 

4.6.5 GEOMETRIC DIRECT MINIMIZATION (GDM) 

Troy Van Voorhis, working at Berkeley with Martin Head-Gordon, has developed a 
novel direct minimization method that is extremely robust, and at the same time is only 
slightly less efficient than DIIS.  This method is called geometric direct minimization 
(GDM) because it takes steps in an orbital rotation space that correspond properly to the 
hyperspherical geometry of that space.  In other words, rotations are variables that 
describe a space which is curved like a many-dimensional sphere.  Just like the optimum 
flight paths for airplanes are not straight lines but great circles, so too are the optimum 
steps in orbital rotation space.  GDM takes this correctly into account, which is the origin 
of its efficiency and its robustness.  For full details, we refer the reader to a paper 
submitted for publication [57].  GDM is a good alternative to DIIS for SCF jobs that 
exhibit convergence difficulties with DIIS. 

In section 4.6.3, we discussed the fact that DIIS can efficiently head towards the global 
SCF minimum in the early iterations.  This can be true even if DIIS fails to converge in 
later iterations.  For this reason, a hybrid scheme has been implemented which uses the 
DIIS minimization procedure to achieve convergence to an intermediate cutoff threshold. 
Thereafter, the geometric direct minimization algorithm is used.  This scheme combines 
the strengths of the two methods quite nicely:  the ability of DIIS to recover from initial 
guesses that may not be close to the global minimum, and the ability of GDM to robustly 
converge to a local minimum, even when the local surface topology is challenging for 
DIIS.  This is the recommended procedure with which to invoke GDM (i.e. setting 
SCF_ALGORITHM = DIIS_GDM).  This hybrid procedure is also compatible with the 
SAD guess, while GDM itself is not, because it requires an initial guess set of orbitals.  If 
one wishes to disturb the initial guess as little as possible before switching on GDM, one 
should additionally specify MAX_DIIS_CYCLES = 1 to obtain only a single Roothaan 
step (which also serves up a properly orthogonalized set of orbitals). 

$rem options relevant to GDM are the following. 
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SCF_ALGORITHM 
 Algorithm used for converging the SCF 
 VARIABLE: 
  STRING 
 OPTIONS: 
  DIIS_GDM Use DIIS and then later switch to geometric direct 

minimization (See THRESH_DIIS_SWITCH, 
MAX_DIIS_CYCLES) 

  GDM Geometric Direct Minimization 
 
MAX_DIIS_CYCLES 
 The maximum number of DIIS iterations before switching to (geometric) direct 

minimization when SCF_ALGORITHM is DIIS_GDM or DIIS_DM.  See also 
THRESH_DIIS_SWITCH. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  50   
 OPTIONS: 

1 Only a single Roothaan step before switching to (G)DM 
n  n DIIS iterations before switching to (G)DM. 

 
THRESH_DIIS_SWITCH 
 The threshold for switching between DIIS extrapolation and direct minimization 

of the SCF energy is 10-THRESH_DIIS_SWITCH when SCF_ALGORITHM is DIIS_GDM or 
DIIS_DM.  See also MAX_DIIS_CYCLES. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  2   
 OPTIONS: 
  User-defined 
 

4.6.5 DIRECT MINIMIZATION (DM) 

Direct minimization (DM) is a less sophisticated forerunner of the geometric direct 
minimization (GDM) method discussed in the previous section.  DM does not properly 
step along great circles in the hyperspherical space of orbital rotations, and therefore 
converges less rapidly and less robustly than GDM, in general.  It is retained for legacy 
purposes, and because it is at present the only method available for restricted open shell 
(RO) SCF calculations in Q-Chem.  In general, the input options are the same as for 
GDM, with the exception of the specification of SCF_ALGORITHM, which can be either 
DIIS_DM (recommended) or DM. 
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4.6.6 MAXIMUM OVERLAP METHOD (MOM) 

In general, the DIIS procedure is remarkably successful.  One difficulty that is 
occasionally encountered is the problem of an SCF that occupies two different sets of 
orbitals on alternating iterations, and therefore oscillates and fails to converge.  This can 
be overcome by choosing orbital occupancies that maximize the overlap of the new 
occupied orbitals with the set previously occupied.  However this combinatorial 
matching problem has computational complexity that scales factorially with the number 
of occupied orbitals if implemented straightforwardly.  Q-Chem contains the maximum 
overlap method (MOM) [58], developed by Andrew Gilbert and Peter Gill at 
Nottingham, which, remarkably, reduces the combinatorial problem to cubic in the 
number of orbitals. 

MOM is therefore is a useful adjunct to DIIS in convergence problems involving flipping 
of orbital occupancies.  It is controlled by the $rem variable MOM_START, which 
specifies the DIIS iteration on which the MOM procedure is first enabled.  There are two 
strategies that are useful in setting a value for MOM_START.  To help maintain an initial 
configuration it should be set to start on the first cycle.  On the other hand, to assist 
convergence it should come on later to avoid holding on to an initial configuration that 
may be far from the converged one. 

The MOM-related $rem variables in full are the following: 

MOM_ECONOMIZE: 
 Determines if any computational savings are to be used with MOM 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  4 
 OPTIONS: 
  1   Include everything 
  2   Freeze core electrons 
  3   Only use orbitals within 1Eh of the HOMO 
  4   Combined frozen core and window 
 RECOMMENDATION: 
  Use default 
 
MOM_PRINT 
 Switches printing on within the MOM procedure 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE 
 OPTIONS: 
  FALSE  Printing is turned off 
  TRUE   Printing is turned on 
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MOM_START 
 Determines when MOM is switched on to stabilize DIIS iterations 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 (FALSE) 
 OPTIONS: 
  0 (FALSE)  MOM is not used 
  n   MOM begins on cycle n 
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4.6.7  EXAMPLES 

$molecule 
   0 2 
   c1 
   x1 c1 1.0 
   c2 c1 rc2 x1 90.0 
   x2 c2 1.0 c1 90.0 x1 0.0 
   c3 c1 rc3 x1 90.0 c2 tc3 
   c4 c1 rc3 x1 90.0 c2 -tc3 
   c5 c3 rc5 c1 ac5 x1 -90.0 
   c6 c4 rc5 c1 ac5 x1 90.0 
   h1 c2 rh1 x2 90.0 c1 180.0 
   h2 c3 rh2 c1 ah2 x1 90.0 
   h3 c4 rh2 c1 ah2 x1 -90.0 
   h4 c5 rh4 c3 ah4 c1 180.0 
   h5 c6 rh4 c4 ah4 c1 180.0 
 
   rc2=2.67298593 
   rc3=1.35449831 
   tc3=62.85150452 
   rc5=1.37290399 
   ac5=116.45436983 
   rh1=1.08573521 
   rh2=1.08534214 
   ah2=122.157328 
   rh4=1.08721616 
   ah4=119.52349629 
$end 
 
$rem 
   basis             =  6-31G* 
   exchange          =  hf 
   memory            =  5000000 
   intsbuffersize    =  15000000 
   scf_algorithm     =  diis_gdm 
   scf_convergence   =  7 
   thresh            =  10 
$end 
 

Example 4.11 Q-Chem input for a UHF calculation using geometric direct 
minimization (GDM) on the phenyl radical, after initial iterations with 
DIIS.  This example fails to converge if DIIS is employed directly. 
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$molecule 
0 2 
b 
$end 
 
$rem 
BASIS       6-31G* 
EXCHANGE    GG99 
MOM_PRINT   TRUE 
MOM_START   3 
$end 
 

Example 4.12 Q-Chem input for a MOM-stabili zed DIIS calculation.  This job fails to 
converge without the use of MOM. 

 

4.7 UNCONVENTIONAL SCF CALCULATIONS. 

4.7.1 CASE APPROXIMATION 

The Coulomb Attenuated Schrödinger Equation (CASE) [59] approximation follows 
from the KWIK [60] algorithm in which the Coulomb operator is separated into two 
pieces 

 
( ) ( )12 12

12 12 12

erfc erf1 r r

r r r

ω ω
≡ +  (0.52) 

The first of these two terms is singular but short-range and the second is non-singular but 
long-range. The CASE approximation is applied by smoothly attenuating all occurrences 
of the Coulomb operator in (0.2) by neglecting the long-range portion of the identity in 
(0.52). The parameter ω can be used to tune the level of attenuation. Although the total 
energies from Coulomb attenuated calculations are significantly different from non-
attenuated energies, it is found that relative energies, correlation energies and, in 
particular, wavefunctions, are not, provided a reasonable value of ω is chosen. 

By virtue of the exponential decay of the attenuated operator, ERIs can be neglected on a 
proximity basis yielding a rigorous O(N) algorithm for single point energies. CASE may 
also be applied in geometry optimizations and frequency calculations. 
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OMEGA 
 Controls the degree of attenuation of the Coulomb operator 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  No default 
 OPTIONS: 
  n  ω = n/1000 
 
INTEGRAL_2E_OPR 
 Determines the two-electron operator 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  -2  Coulomb Operator 
 OPTIONS: 
  -1  Apply the CASE approximation 
  -2  Coulomb Operator 
 
 

4.7.2 POLARIZED ATOMIC ORBITAL (PAO) CALCULATIONS 

Polarized atomic orbital (PAO) calculations are an interesting unconventional SCF 
method, in which the molecular orbitals and the density matrix are not expanded directly 
in terms of the basis of atomic orbitals.  Instead, an intermediate molecule-optimized 
minimal basis of polarized atomic orbitals (PAO’s) is used [61].  The polarized atomic 
orbitals are defined by an atom-blocked linear transformation from the fixed atomic 
orbital basis, where the coeff icients of the transformation are optimized to minimize the 
energy, at the same time as the density matrix is obtained in the PAO representation.  
Thus a PAO-SCF calculation is a constrained variational method, whose energy is above 
that of a full SCF calculation in the same basis.  However, a molecule optimized minimal 
basis is a very compact and useful representation for purposes of chemical analysis, and 
it also has potential computational advantages in the context of MP2 or local MP2 
calculations, as can be done after a PAO-HF calculation is complete to obtain the PAO-
MP2 energy. 

PAO-SCF calculations tend to systematically underestimate binding energies (since by 
definition the exact result is obtained for atoms, but not for molecules).  In tests on the 
G2 database, PAO-B3LYP/6-311+G(2df,p) atomization energies deviated from full 
B3LYP/6-311+G(2df,p) atomization energies by roughly 20 kcal/mol, with the error 
being essentially extensive with the number of bonds [62].  This deviation can be 
reduced to only 0.5 kcal/mol [62] with the use of a simple non-iterative second order 
correction for “beyond-minimal basis” effects [63].  The second order correction is 
evaluated at the end of each PAO-SCF calculation, as it involves negligible 
computational cost.  Analytical gradients are available using PAO’s, to permit structure 
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optimization.  For additional discussion of the PAO-SCF method and its uses, see the 
references cited above. 

Calculations with PAO’s are determined controlled by the following $rem variables.  
PAO_METHOD = PAO invokes PAO-SCF calculations, while the algorithm used to 
iterate the PAO’s can be controlled with PAO_ALGORITHM. 

PAO_ALGORITHM 
 Algorithm used to optimise polarized atomic orbitals (see PAO_METHOD) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0  use eff icient (and riskier) strategy to converge PAO’s 
 OPTIONS: 
  1  use conservative (and slower) strategy to converge PAO’s 
 
PAO_METHOD 
 Controls evaluation of polarized atomic orbitals (PAO’s) 
 VARIABLE: 
  STRING 
 DEFAULT: 
  EPAO For local MP2 calculations 
  Otherwise no default  
 OPTIONS: 
  PAO Perform PAO-SCF instead of conventional SCF 
  EPAO Obtain EPAO’s after a conventional SCF. 
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4.8 GROUND STATE METHOD SUMMARY 

To summarize the main features of Q-Chem’s ground state self-consistent field 
capabiliti es, the user needs to consider: 

1. Input a molecular geometry ($molecule keyword) 
• Cartesian 
• Z-matrix 
• Read from prior calculations 

 
2. Declare the job specification ($rem keyword) 

• JOBTYPE 
◊ Single point 
◊ Optimization 
◊ Frequency 

• BASIS 
◊ Refer to Chapter 7 (note: $basis keyword for user defined basis sets). 
◊ Effective core potentials, as described in Chapter 8. 

• EXCHANGE 
◊ Linear scaling algorithms for all methods 
◊ Arsenal of exchange density functionals 
◊ User definable functionals and hybrids 

• CORRELATION 
◊ DFT or conventional methods 
◊ Linear scaling (CPU and memory) incorporation of correlation with 

DFT 
◊ Arsenal of correlation density functionals 
◊ User definable functionals and hybrids 
◊ See Chapter 5 for wavefunction-based correlation methods. 

 
3. Exploit Q-Chem’s special features 

• CFMM, LinK large molecule options 
• SCF rate of convergence increased through improved guessers and alternative 

minimization algorithms 
• Explore novel methods if desired: CASE approximation, PAO’s. 
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CHAPTER 5 WAVEFUNCTION-BASED 
CORRELATION METHODS 

 

5.1 INTRODUCTION 

The Hartree-Fock procedure, while often qualitatively correct, is frequently 
quantitatively deficient. The deficiency is due to the underlying assumption of the 
Hartree-Fock approximation: that electrons move independently within molecular 
orbitals subject to an averaged field imposed by the remaining electrons. The error that 
this introduces is called the correlation energy and a wide variety of procedures exist for 
estimating its magnitude.  The purpose of this chapter is to introduce the main 
wavefunction-based methods available in Q-Chem to describe electron correlation. 

Wavefunction-based electron correlation methods concentrate on the design of 
corrections to the wavefunction beyond the mean-field Hartree-Fock description.  This is 
to be contrasted with the density functional theory methods discussed in the previous 
chapter.  While density functional methods yield a description of electronic structure that 
accounts for electron correlation subject only to the limitations of present-day functionals 
(which for example omit dispersion interactions), DFT cannot be systematically 
improved if the results are deficient.  Wave function-based approaches for describing 
electron correlation [1,2] offer this main advantage.  Their main disadvantage is 
relatively high computational cost, particularly for the higher level theories. 

There are four broad classes of models for describing electron correlation that are 
supported within Q-Chem.  The first three directly approximate the full time-independent 
Schrodinger equation.  In order of increasing accuracy, and also increasing cost, they are: 

(a) Perturbative treatment of pair correlations between electrons, capable of 
recovering typically 80% or so of the correlation energy in stable molecules. 

(b) Self-consistent treatment of pair correlations between electrons, capable of 
recovering on the order of 95% or so of the correlation energy. 

(c) Non-iterative corrections for higher than double substitutions, which can typically 
account for more than 99% of the correlation energy.  They are the basis of many 
modern methods that are capable of yielding chemical accuracy for ground state 
reaction energies, as exemplified by the G2 [3] and G3 methods [4]. 

These methods are discussed in the following 3 subsections. 

There is also a 4th class of methods supported in Q-Chem, which have a different 
objective.  These active space methods aim to obtain a balanced description of electron 
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correlation in highly correlated systems, such as biradicals, or along bond-breaking 
coordinates.  Active space methods are discussed in the 4th part of this chapter. 

In order to carry out a wavefunction-based electron correlation calculation using 
Q-Chem, 3 $rem variables need to be set: 

• BASIS   to specify the basis set (see chapter 6) 
• CORRELATION  method for treating Correlation (defaults to NONE) 
• N_FROZEN_CORE frozen core electrons (0 default, optionally FC, or n) 
 
Note that for wavefunction-based correlation methods, the default option for 
EXCHANGE is HF (Hartree-Fock).  It can therefore be omitted from the input if desired. 
 
The full range of ground state wavefunction-based correlation methods available (i.e. the 
recognized options to the CORRELATION keyword) are as follows: 
 
CORRELATION 
 Specifies the correlation level of theory, either DFT or wavefunction-based. 
 VARIABLE: 
  STRING 
 DEFAULT: 
  None   No Correlation 
 OPTIONS: 
  MP2   Sections 5.2 and 5.3 
  Local_MP2  Section 5.4 
  MP3   Section 5.2 
  MP4SDQ  Section 5.2 
  MP4   Section 5.2 
  CCD   Section 5.5 
  CCD(2)  Section 5.6 
  CCSD   Section 5.5 
  CCSD(T)  Section 5.6 
  CCSD(2)  Section 5.6 
  QCISD     Section 5.5 
  QCISD(T)  Section 5.6 
  OD   Section 5.5 
  OD(T)   Section 5.6 
  OD(2)   Section 5.6 
  VOD   Section 5.7 
  VOD(2)  Section 5.7 
  QCCD   Section 5.5 
  VQCCD  Section 5.7 
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5.2 MØLLE R-PLESSET PERTURBATION THEORY 

5.2.1 INTRODUCTION 

Møller-Plesset Perturbation Theory [5] is a widely used method for approximating the 
correlation energy of molecules. In particular, second order Møller-Plesset perturbation 
theory (MP2) is one of the simplest and most useful levels of theory beyond the Hartree-
Fock approximation. Conventional and local MP2 methods available in Q-Chem are 
discussed in detail i n Sections 5.3 and 5.4 respectively.  The MP3 method is still 
occasionally used, while MP4 calculations are quite commonly employed as part of the 
G2 and G3 thermochemical methods [3,4].  In the remainder of this section, the 
theoretical basis of Møller-Plesset theory is reviewed. 

5.2.2 THEORETICAL BACKGROUND 

The Hartree-Fock wave function (Ψ0) and energy (E0) are approximate solutions 
(eigenfunction and eigenvalue) to the exact Hamiltonian eigenvalue problem or 
Schrödinger’s electronic wave equation (4.5). The HF wave function and energy are, 
however, exact solutions for the Hartree-Fock Hamiltonian (H0) eigenvalue problem. If 
we assume that the Hartree-Fock wave function (Ψ0) and energy (E0) lie near the exact 
wave function (Ψ) and energy (E), we can now write the exact Hamiltonian operator as 

 oH H Vλ= +  (5.1) 

where V is the small perturbation and λ is a dimensionless parameter. Expanding the 
exact wave function and energy in terms of the HF wave function and energy yields 

 (0) (1) 2 (2) 3 (3)E E E E Eλ λ λ= + + + + �  (5.2) 

 (1) 2 (2) 3 (3)
0 λ λ λΨ = Ψ + Ψ + Ψ + Ψ + �  (5.3) 

substituting the expansions into the Schrödinger equation and gathering terms in λn yields 

 (0)
0 0 0H EΨ = Ψ  (5.4) 

 (1) (0) (1) (1)
0 0 0H V E EΨ + Ψ = Ψ + Ψ  (5.5) 

 (2) (1) (0) (2) (1) (1) (2)
0 0H V E E EΨ + Ψ = Ψ + Ψ + Ψ  (5.6) 

and so forth. Multiplying each of the above equations by Ψ
0
  and integrating over all 

space yields the following expression for the nth order (MPn) energy 

 (0)
0 0 0E H= Ψ Ψ  (5.7) 
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 (1)
0 0E V= Ψ Ψ  (5.8) 

 (2) (1)
0E V= Ψ Ψ  (5.9) 

Thus, the Hartree-Fock energy 

 0 0 0 0E H V= Ψ + Ψ  (5.10) 

is simply the sum of the zeroth- and first- order energies 

 (0) (1)
0E E E= +  (5.11) 

The correlation energy can then be written 

  (2) (3) (4)
0 0 0corrE E E E= + + + �  (5.12) 

of which the first term is the MP2 energy. 

It can be shown that the MP2 energy can be written (in terms of spinorbitals) as 

 

2

(2)
0

1

4

virt occ

ab ij a b i j

ab ij
E

ε ε ε ε
= −

+ − −∑∑  (5.13) 

where 

 ab ij ab ij ab ji= −  (5.14) 

and 

 
12

1
( ) ( ) ( ) ( ) d da c b dab cd

r
ψ ψ ψ ψ

 
=  

 
∫ 1 1 2 2 1 2r r r r r r  (5.15) 

which can be written in terms of the two electron repulsion integrals 

 ( )|a c b dab cd C C C Cµ ν λ σ
µ ν λ σ

µν λσ= ∑∑∑∑  (5.16) 

Expressions for higher order terms follow similarly, although with much greater 
algebraic and computational complexity.  MP3 and particularly MP4 (the third and fourth 
order contributions to the correlation energy) are both occasionally used, although they 
are increasingly supplanted by the coupled cluster methods described in the following 
sections.  The disk and memory requirements for MP3 are similar to the self-consistent 
pair correlation methods discussed in Section 5.5 while the computational cost of MP4 is 
similar to the (T) corrections discussed in Section 5.6. 
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5.3 EXACT MP2 METHODS 

5.3.1 ALGORITHM 

Second order Møller-Plesset theory (MP2) [5] probably the simplest useful wave 
function-based electron correlation method.  Revived in the mid-1970’s, it remains 
highly popular today, because it offers systematic improvement in optimized geometries 
and other molecular properties relative to Hartree-Fock (HF) theory [6].  Indeed, in a 
recent comparative study of small closed shell molecules [7], MP2 outperformed much 
more expensive singles and doubles coupled-cluster theory for such properties!  Relative 
to state-of-the-art Kohn-Sham density functional theory (DFT) methods, which are the 
most economical methods to account for electron correlation effects, MP2 has the 
advantage of properly incorporating long-range dispersion forces.  The principal 
weaknesses of MP2 theory are for open shell systems, and other cases where the HF 
determinant is a poor starting point. 

Q-Chem contains an eff icient conventional semi-direct method to evaluate the MP2 
energy and gradient [8].  These methods require OVN memory (O,V,N are the numbers 
of occupied, virtual and total orbitals, respectively), and disk space which is bounded 
from above by OVN2/2.  The latter can be reduced to IVN2/2 by treating the occupied 
orbitals in batches of size I, and re-evaluating the two-electron integrals O/I times.  This 
approach is tractable on modern workstations for energy and gradient calculations of at 
least 500 basis functions or so, or molecules of between 15 and 30 first row atoms, 
depending on the basis set size.  The computational cost increases between the 3rd and 5th 
power of the size of the molecule, depending on which part of the calculation is time-
dominant.  

The algorithm and implementation in Q-Chem is improved over earlier methods [9,10], 
particularly in the following areas: 

• Uses pure functions, as opposed to Cartesians, for all fifth order steps. This leads to 
large computational savings for basis sets containing pure functions 

• Customized loop unrolli ng for improved eff iciency 
• The sortless semi-direct method avoids a read and write operation resulting in a large 

I/O savings 
• Reduction in disk and memory usage 
• No extra integral evaluation for gradient calculations 
• Full exploitation of frozen core approximation 
 
The implementation offers the user the following alternatives: 

1. direct algorithm (energies only) 
2. disk-based sortless semi-direct algorithm (energies and gradients) 
3. local occupied orbital method (energies only). 
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The semidirect algorithm is the only choice for gradient calculations.  It is also normally 
the most eff icient choice for energy calculations.  There are two classes of exceptions: 

• If the amount of disk space available is not significantly larger than the amount of 
memory available, then the direct algorithm is preferred. 

• If the calculation involves a very large basis set, then the local orbital method may be 
faster, because it performs the transformation in a different order.  It does not have 
the large memory requirement (no OVN array needed), and always evaluates the 
integrals 4 times.  The CD_DISK option is also ignored in this algorithm, which 
requires up to OOVN words of disk space. 

There are 3 important options that are not defaults that should be wisely chosen by the 
user in order to exploit the full eff iciency of Q-Chem’s direct and semidirect MP2 
methods (as discussed above, the LOCAL_OCCUPIED method has different 
requirements). 

(1) MEMORY:  The value specified for this REM variable must be suff icient to 
permit eff icient integral evaluation (2-10MW) and to hold a large temporary array 
whose size is OVN, the product of the number of occupied, virtual and total 
numbers of orbitals. 

(2) CD_DISK:  The value specified for this REM variable should be as large as 
possible (i.e. perhaps 80% of the free space on your $QCSCRATCH partition 
where temporary job files are held).  The value of this variable will determine 
how many times the two-electron integrals in the atomic orbital basis must be re-
evaluated, which is a major computational step in MP2 calculations. 

(3) N_FROZEN_CORE:  The computational requirements for MP2 are proportional 
to the number of occupied orbitals for some steps, and the square of that number 
for other steps.  Therefore the CPU time can be significantly reduced if your job 
employs the frozen core approximation.  Additionally the memory and disk 
requirements are reduced when the frozen core approximation is employed. 
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5.3.2 ALGORITHM CONTROL AND CUSTOMIZATION 

The direct and semidirect integral transformation algorithms used by Q-Chem (e.g., 
MP2, CIS(D)) are limited by available disk space (D) and memory (C), the number of 
basis functions (N), the number of virtual orbitals (V) and the number of occupied 
orbitals (O), as discussed above.  The generic description of the key REM’s are as 
follows: 

MEMORY 
 Sets the memory for individual program modules 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  2,000,000 (2 MW) 
 OPTIONS: 

User-defined number of words.  For direct and semidirect MP2 
calculations, this must exceed OVN + requirements for AO integral 
evaluation (2-10 MW), as discussed above. 

 
MEMORY_TOTAL 
 Sets the total memory available to Q-Chem 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  Unlimited (1,000 MW) 
 OPTIONS: 
  User-defined number of words 
 RECOMMENDATION: 
  Use default, or set to the physical memory of your machine. 
 
CD_MAX_DISK 
 Sets the amount of disk space (in words) available for MP2 calculations 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  200,000,000 (200 MW) 
 OPTIONS: 
  User-defined: should be set as large as possible, discussed in Sec. 5.3.1 
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CD_ALGORITHM 
 Determines the algorithm for MP2 integral transformations 
 VARIABLE: 
  STRING 
 DEFAULT: 
  Program determined 
 OPTIONS: 
  DIRECT   Uses fully direct algorithm (energies only) 
  SEMI_DIRECT  Uses disk-based semi-direct algorithm 
  LOCAL_OCCUPIED  Alternative energy algorithm (see 5.3.1) 
 RECOMMENDATION: 
  Semidirect is usually most efficient, and will normally be chosen by 

default. 
 
N_FROZEN_CORE 
 Sets the number of frozen core orbitals in a post-Hartree-Fock calculation 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 
 OPTIONS: 
  FC Frozen Core approximation (all core orbitals frozen) 
  n Freeze n core orbitals 
 RECOMMENDATION: 

While the default is not to freeze orbitals, MP2 calculations are more 
efficient with frozen core orbitals.  Use FC if possible. 

 
N_FROZEN_VIRTUAL 
 Sets the number of frozen virtual orbitals in a post-Hartree-Fock calculation 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 
 OPTIONS: 
  n Freeze n virtual orbitals 
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5.3.3 EXAMPLES 

$molecule 
0 1 
O 
H1 O OH 
H2 O OH H1 HOH 
 
OH = 1.01 
HOH = 105 
$end 
 
$rem 
JOBTYPE  SP  Single Point energy 
CORRELATION MP2 
EXCHANGE  HF  Exact 
BASIS  6-31G* 
$end 

Example 5.1 Example of an MP2/6-31G* calculation on the water molecule 

 
 
$molecule 
0 1 
O 
H1 O OH 
H2 O OH H1 HOH 
 
OH = 1.01 
HOH = 105 
$end 
 
$rem 
JOBTYPE  SP  Single Point energy 
CORRELATION MP2 
EXCHANGE  HF  Exact 
BASIS  6-31G* 
N_FROZEN_CORE FC  Frozen core approximation 
$end 

Example 5.2 Example of an MP2/6-31G* calculation employing the frozen core 
approximation 
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5.4 LOCAL MP2 METHODS 

5.4.1 LOCAL TRIATOMICS IN MOLECULES (TRIM) MODEL 

The development of what may be called “ fast methods” for evaluating electron 
correlation is a problem of both fundamental and practical importance, because of the 
unphysical increases in computational complexity with molecular size which aff li ct 
“exact” implementations of electron correlation methods.  Ideally, the development of fast 
methods for treating electron correlation should not impact either model errors or 
numerical errors associated with the original electron correlation models.  Unfortunately 
this is not possible at present, as may be appreciated from the following rough argument. 
Spatial locality is what permits reformulations of electronic structure methods that yield 
the same answer as traditional methods, but faster.  The one-particle density matrix decays 
exponentially with a rate that relates to the HOMO-LUMO gap in periodic systems.  
When length scales longer than this characteristic decay length are examined, sparsity will 
emerge in both the one-particle density matrix and also pair correlation amplitudes 
expressed in terms of localized functions.  Very roughly, such a length scale is about 5 to 
10 atoms in a line, for good insulators such as alkanes.  Hence sparsity emerges beyond 
this number of atoms in 1-d, beyond this number of atoms squared in 2-d, and this number 
of atoms cubed in 3-d.  Thus for three-dimensional systems, locality only begins to emerge 
for systems of between hundreds and thousands of atoms. 

If we wish to accelerate calculations on systems below this size regime, we must 
therefore introduce additional errors into the calculation, either as numerical noise 
through looser tolerances, or by modifying the theoretical model, or perhaps both.  Q-
Chem’s approach to local electron correlation is based on modifying the theoretical 
models describing correlation with an additional well -defined local approximation.  We 
do not attempt to accelerate the calculations by introducing more numerical error because 
of the diff iculties of controlli ng the error as a function of molecule size, and the 
diff iculty of achieving reproducible significant results. From this perspective, local 
correlation becomes an integral part of specifying the electron correlation treatment.  
This means that the considerations necessary for a correlation treatment to quali fy as a 
well -defined theoretical model chemistry apply equally to local correlation modeling.  
The local approximations should be 

(a) Size-consistent: meaning that the energy of a supersystem of two noninteracting 
molecules should be the sum of the energy obtained from individual calculations 
on each molecule. 

(b) Uniquely defined:  Require no input beyond nuclei, electrons, and an atomic 
orbital basis set.  In other words, the model should be uniquely specified without 
customization for each molecule.   

(c) Yield continuous potential energy surfaces:  The model approximations should be 
smooth, and not yield energies that exhibit jumps as nuclear geometries are 
varied. 
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To ensure that these model chemistry criteria are met, Q-Chem’s local MP2 methods 
[11,12] express the double substitutions (i.e. the pair correlations) in a redundant basis of 
atom-labeled functions.  The advantage of doing this is that local models satisfying 
model chemistry criteria can be defined by performing an atomic truncation of the 
double substitutions.  A general substitution in this representation will t hen involve the 
replacement of occupied functions associated with two given atoms by empty (or virtual) 
functions on two other atoms, coupling together 4 different atoms.  We can force one 
occupied to virtual substitution (of the two that comprise a double substitution) to occur 
only between functions on the same atom, so that only 3 different atoms are involved in 
the double substitution.  This defines the triatomics in molecules (TRIM) local model for 
double substitutions.  The TRIM model offers the potential for reducing the 
computational requirements of exact MP2 theory by a factor proportional to the number 
of atoms.  We could also force each occupied to virtual substitution to be on a given 
atom, thereby defining a more drastic diatomics in molecules (DIM) local correlation 
model. 

The simplest atom-centered basis that is capable of spanning the occupied space is a 
minimal basis of core and valence atomic orbitals on each atom.  Such a basis is 
necessarily redundant because it also contains suff icient flexibilit y to describe the empty 
valence antibonding orbitals necessary to correctly account for nondynamical electron 
correlation effects such as bond-breaking.  This redundancy is actually important for the 
success of the atomic truncations because occupied functions on adjacent atoms to some 
extent describe the same part of the occupied space.  The minimal functions we use to 
span the occupied space are obtained at the end of a large basis set calculation, and are 
called extracted polarized atomic orbitals (EPAO’s) [13].  We discuss them briefly 
below.  It is even possible to explicitl y perform an SCF calculation in terms of a 
molecule-optimized minimal basis of polarized atomic orbitals (PAO’s) (see Chapter 4).  
To span the virtual space, we use the full set of atomic orbitals, appropriately projected 
into the virtual space. 

We summarize the situation.  The number of functions spanning the occupied subspace 
will be the minimal basis set dimension, M, which is greater than the number of occupied 
orbitals, O, by a factor of up to about 2.  The virtual space is spanned by the set of 
projected atomic orbitals whose number is the atomic orbital basis set size N, which is 
fractionally greater than the number of virtuals V=N-O.  The number of double 
substitutions in such a redundant representation will be typically 3 to 5 times larger than 
the usual total.  This will be more than compensated by reducing the number of retained 
substitutions by a factor of the number of atoms, A, in the local triatomics in molecules 
model, or a factor of A2 in the diatomics in molecules model. 

The local MP2 energy in the TRIM and DIM models are given by the following 
expressions, which can be compared against the full MP2 expression given earlier in Eq. 
(5.13).  First, for the DIM model: 

 
( )( )

2

| ||1

2DIMP
PQ P Q

P Q P Q
E = −

∆ + ∆∑  (5.17) 
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The sums are over the linear number of atomic single excitations after they have been 
canonicalized.  Each term in the denominator is thus an energy difference between 
occupied and virtual levels in this local basis.  Similarly, the TRIM model corresponds to 
the following local MP2 energy: 

 
( )( )

2 2

| ||
TRIMP DIMP

Pbj b jP

P jb P jb
E E

ε ε
= − −

∆ + −∑  (5.18) 

where the sum is now mixed between atomic substitutions ( P ), and nonlocal occupied 
(j) to virtual (b) substitutions.  See references [11,12] for a full derivation and discussion. 

The accuracy of the local TRIM and DIM models has been tested in a series of 
calculations [11,12].  In particular, the TRIM model has been shown to be quite faithful 
to full MP2 theory via the following tests: 

(a) The TRIM model recovers around 99.7% of the MP2 correlation energy for 
covalent bonding.  This is significantly higher than the roughly 98-99% 
correlation energy recovery typically exhibited by the Saebo-Pulay local 
correlation method [14].  The DIM model recovers around 95% of the correlation 
energy.   

(b) The performance of the TRIM model for relative energies is very robust, as 
shown in ref. [11] for the challenging case of torsional barriers in conjugated 
molecules.  The RMS error in these relative energies is only 0.031 kcal/mol, as 
compared to around 1 kcal/mol when electron correlation effects are completely 
neglected.   

(c) For the water dimer with the aug-cc-pVTZ basis, 96% of the MP2 contribution to 
the binding energy is recovered with the TRIM model, as compared to 62% with 
the Saebo-Pulay local correlation method.   

(d) For calculations of the MP2 contribution to the G3 and G3(MP2) energies with 
the larger molecules in the G3-99 database [15], introduction of the TRIM 
approximation results in an RMS error relative to full MP2 theory of only 0.3 
kcal/mol, even though the absolute magnitude of these quantities is on the order 
of tens of kcal/mol. 
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5.4.2 EPAO EVALUATION OPTIONS 

When a local MP2 job (requested by the LOCAL_MP2 option for CORRELATION) is 
performed, the first new step after the SCF calculation is converged is to extract a 
minimal basis of polarized atomic orbitals (EPAO’s) that spans the occupied space.  
There are three valid choices for this basis, controlled by the PAO_METHOD and 
EPAO_ITERATE keywords described below. 

(1) Uniterated EPAO’s:  The initial guess EPAO’s are the default for local MP2 
calculations, and are defined as follows.  For each atom, the covariant density 
matrix (SPS) is diagonalized, giving eigenvalues which are approximate natural 
orbital occupancies, and eigenvectors which are corresponding atomic orbitals.  
The m eigenvectors with largest populations are retained (where m is the minimal 
basis dimension for the current atom).  This nonorthogonal minimal basis is 
symmetrically orthogonalized, and then modified as discussed in ref. [13] to 
ensure that these functions rigorously span the occupied space of the full SCF 
calculation that has just been performed.  These orbitals may be denoted as 
EPAO(0) to indicate that no iterations have been performed after the guess.  In 
general, the quality of the local MP2 results obtained with this option is very 
similar to the EPAO option below, but it is much faster and fully robust.  For the 
example of the torsional barrier calculations [11] discussed above, the TRIM 
RMS deviations of 0.03 kcal/mol from full MP2 calculations are increased to 
only 0.04 kcal/mol when EPAO(0) orbitals are employed rather than EPAO’s. 

(2) EPAO’s:  EPAO’s are defined by minimizing a localization functional as 
described in ref. [13].  These functions were designed to be suitable for local 
MP2 calculations, and have yielded excellent results in all tests performed so far.  
Unfortunately the functional is diff icult to converge for large molecules, at least 
with the algorithms that have been developed to this stage.  Therefore it is not the 
default, but is switched on by specifying a (large) value for EPAO_ITERATE, as 
discussed below. 

(3) PAO:  If the SCF calculation is performed in terms of a molecule-optimized 
minimal basis, as described in chapter 4, then the resulting PAO-SCF calculation 
can be corrected with either conventional or local MP2 for electron correlation.  
PAO-SCF calculations alter the SCF energy, and are therefore not the default.  
This can be enabled by specifying PAO_METHOD as PAO, in a job which also 
requests CORRELATION as LOCAL_MP2 
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PAO_METHOD 
 Controls the type of PAO calculations requested 
 VARIABLE: 
  STRING 
 DEFAULT: 
  EPAO  For local MP2, EPAO’s are chosen by default. 
 OPTIONS: 
  EPAO  Find EPAO’s by minimizing delocalisation function 
  PAO  Do SCF in a molecule-optimized minimal basis 
 
EPAO_ITERATE 
 Controls iterations for EPAO calculations (see PAO_METHOD) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 

0  Use uniterated EPAO’s based on atomic blocks of SPS. 
 OPTIONS: 
  n  Optimize the EPAO’s for up to n iterations. 
 RECOMMENDATION: 

Use default. For molecules that are not too large, one can test the 
sensitivity of the results to the type of minimal functions by the use of 
optimised EPAO’s in which case a value of n=500 is reasonable. 

 
EPAO_WEIGHTS 
 Controls algorithm and weights for EPAO calculations (see PAO_METHOD) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  115  Standard weights, use 1st  and 2nd order optimisation 
 OPTIONS: 
  15  Standard weights, with 1st order optimisation only. 
 RECOMMENDATION: 
  Use default, unless convergence failure is encountered. 
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5.4.3 ALGORITHM CONTROL AND CUSTOMIZATION 

A local MP2 calculation (requested by the LOCAL_MP2 option for CORRELATION) 
consists of the following steps: 

• After the SCF is converged, a minimal basis of EPAO’s are obtained. 

• The TRIM (and DIM) local MP2 energies are then evaluated (gradients are not yet 
available). 

Details of the eff icient implementation of the local MP2 method described above are 
reported in the recent thesis of Dr. Michael Lee [16], and will shortly be published in the 
scientific literature [17].  Here we simply summarize the capabiliti es of the program.  
The computational advantage associated with these local MP2 methods varies depending 
upon the size of molecule and the basis set. As a rough general estimate, TRIM-MP2 
calculations are feasible on molecule sizes about twice as large as those for which 
conventional MP2 calculations are feasible on a given computer, and this is their primary 
advantage.  Our implementation is well suited for large basis set calculations.  The AO 
basis two-electron integrals are evaluated four times.  DIM-MP2 calculations are 
performed as a by-product of TRIM-MP2 but no separately optimized DIM algorithm 
has been implemented. 

The resource requirements for local MP2 calculations are as follows: 

• Memory_total:  The memory requirement for the integral transformation does not 
exceed OON, and is thresholded so that it asymptotically grows linearly with 
molecule size.  Additional memory of approximately 32N2 is required to complete the 
local MP2 energy evaluation.   

• Disk: The disk space requirement is only about 8OVN, but is not thresholded.  This is 
a very large reduction from the case of a full MP2 calculation, where, in the case of 4 
integral evaluations, OVN2/4 disk space is required.  As the local MP2 disk space 
requirement is not adjustable, the CD_DISK keyword is ignored for LOCAL_MP2 
calculations.  

The evaluation of the local MP2 energy does not require any further customization.  An 
adequate amount of MEMORY (5 to 10 milli on words) should be specified to permit 
eff icient AO basis two-electron integral evaluation, but all l arge scratch arrays are 
allocated from MEMORY_TOTAL. 
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5.4.4 EXAMPLES 

$molecule 
0 1 
C 
C,1,1.32095 
C,2,1.478448,1,121.185244 
O,3,1.18974,2,123.834335,1,180. 
H,1,1.076863,2,121.497711,3,0. 
H,1,1.074497,2122.085528,3,180. 
H,2,1.075494,1,122.339969,3,180. 
H,3,1.094859,2,115.27087,4,180. 
$end 
 
$rem 
correlation         local_mp2 
basis               6-311g** 
$end 
 
@@@ 
$molecule 
0 1 
C 
C,1  316563 
C,2,1.498384,1,123.439464 
O,3,1.18747,2,123.811782,1,92.283611 
H,1,1.07631,2,122.029762,3,-0.310147 
H,1,1.074844,2,121.429505,3,180.276629 
H,2,1.078134,1,120.962285,3,180.340519 
H,3,1.093867,2,115.870616,4,179.067691 
$end 
 
$rem 
correlation         local_mp2 
basis               6-311g** 
$end 
 

Example 5.3 A relative energy evaluation using the local TRIM model for MP2 with 
the 6-311G** basis set.  The energy difference is the internal rotation 
barrier in propenal, with the first geometry being planar trans, and the 
second the transition structure. 
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5.5 SELF-CONSISTENT PAIR CORRELATION METHODS 

The following sections give short summaries of the various pair correlation methods 
available in Q-Chem, all of which are variants of coupled cluster theory.  The basic 
object-oriented tools necessary to permit the implementation of these methods in Q-
Chem was accomplished by Dr. Anna Krylov and Dr. David Sherrill , working at 
Berkeley with Martin Head-Gordon, and then continuing independently at the University 
of Southern Cali fornia and Georgia Tech respectively.  While at Berkeley, Krylov and 
Sherrill also developed the optimized orbital coupled cluster method, with additional 
assistance from Ed Byrd.  The extension of this code to MP3, MP4, CCSD and QCISD is 
the work of Dr. Steve Gwaltney at Berkeley, while the extensions to QCCD were 
implemented by Ed Byrd at Berkeley. 

5.5.1 COUPLED CLUSTER SINGLES AND DOUBLES (CCSD) 

The standard approach for treating pair correlations self-consistently are coupled cluster 
methods where the cluster operator contains all single and double substitutions [18], 
abbreviated as CCSD.  CCSD yields results that are only slightly superior to MP2 for 
structures and frequencies of stable closed shell molecules.  However, it is far superior 
for reactive species, such as transition structures and radicals, for which the performance 
of MP2 is quite erratic.  Q-Chem supports only energy evaluation for CCSD at present. 

A full textbook presentation of CCSD is beyond the scope of this manual, and several 
comprehensive references are available.  However, it may be useful to briefly summarize 
the main equations.  The CCSD wavefunction is: 

 ( )1 2 0
ˆ ˆexpCCSD T TΨ = + Φ  (5.19) 

where the single and double excitation operators may be defined by their actions on the 
reference single determinant (which is normally taken as the Hartree-Fock determinant in 
CCSD): 

 1 0
ˆ

occ virt
a a
i i

i a

T tΦ = Φ∑∑  (5.20) 

 2 0

1ˆ
4

occ virt
ab ab
ij ij

ij ab

T tΦ = Φ∑∑  (5.21) 

It is unfeasible to determine the CCSD energy by variational minimization of 
CCSD

E  

with respect to the singles and doubles amplitudes because the expressions terminate at 
the same level of complexity as full configuration interaction (!).  So, instead, the 
Schrödinger equation is satisfied in the subspace spanned by the reference determinant, 
all single substitutions, and all double substitutions.   Projection with these functions and 
integration over all space provides suff icient equations to determine the energy, the 
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singles and doubles amplitudes as the solutions of sets of nonlinear equations.  These 
equations may be symbolically written as follows: 

 
( )

0

21
0 1 1 2 02

ˆ

ˆ ˆ ˆ ˆ1

CCSD CCSD

C

E H

H T T T

= Φ Ψ

= Φ + + + Φ
 (5.22) 
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C

H E
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= Φ + + + + + + + + Φ
 (5.24) 

The result is a set of equations which yield an energy that is not necessarily variational 
(i.e. may not be above the true energy), although it is strictly size-consistent.  The 
equations are also exact for a pair of electrons, and, to the extent that molecules are a 
collection of interacting electron pairs, this is the basis for expecting that CCSD results 
will be of useful accuracy. 

The computational effort necessary to solve the CCSD equations can be shown to scale 
with the 6th power of the molecular size, for fixed choice of basis set.  Disk storage scales 
with the 4th power of molecular size, and involves a number of sets of doubles 
amplitudes, as well as two-electron integrals in the molecular orbital basis.  Therefore the 
improved accuracy relative to MP2 theory comes at a steep computational cost.  Given 
these scalings it is relatively straightforward to estimate the feasibilit y (or unfeasibilit y) 
of a CCSD calculation on a larger molecule (or with a larger basis set) given that a 
smaller trial calculation is first performed. 

5.5.2 QUADRATIC CONFIGURATION INTERACTION (QCISD) 

Quadratic configuration interaction with singles and doubles (QCISD) [19] is a widely 
used alternative to CCSD, that shares its main desirable properties of being size-
consistent, exact for pairs of electrons, as well as being also nonvariational.  Its 
computational cost also scales in the same way with molecule size and basis set as 
CCSD, although with slightly smaller constants.  While originally proposed 
independently of CCSD based on correcting configuration interaction equations to be 
size-consistent, QCISD is probably best viewed as approximation to CCSD.  The 
defining equations are given below (under the assumption of Hartree-Fock orbitals, 
which should always be used in QCISD).  The QCISD equations can clearly be viewed 
as the CCSD equations with a large number of terms omitted, which are evidently not 
very numerically significant: 
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 ( )0 2 0
ˆ ˆ1QCISD

C
E H T= Φ + Φ  (5.25) 

 ( )1 2 1 2 0
ˆ ˆ ˆ ˆ ˆ0 a

i
C

H T T TT= Φ + + Φ  (5.26) 

 ( )21
1 2 2 02

ˆ ˆ ˆ ˆ0 1ab
ij

C
H T T T= Φ + + + Φ  (5.27) 

QCISD energies are available in Q-Chem, and are requested with the QCISD keyword.  
As discussed in Section 4.6, the noniterative QCISD(T) correction to the QCISD solution 
is also available to approximately incorporate the effect of higher substitutions. 

5.5.3 OPTIMIZED ORBITAL COUPLED CLUSTER DOUBLES (OD) 

It is possible to greatly simplify the CCSD equations by omitting the single substitutions 
(i.e. setting the T1 operator to zero).  If the same single determinant reference is used 
(specifically the Hartree-Fock determinant), then this defines the coupled cluster doubles 
(CCD) method, by the following equations: 

 ( )0 2 0
ˆ ˆ1CCD

C
E H T= Φ + Φ  (5.28) 

 ( )21
2 2 02

ˆ ˆ ˆ0 1ab
ij

C
H T T= Φ + + Φ  (5.29) 

The CCD method cannot itself usually be recommended because while pair correlations 
are all correctly included, the neglect of single substitutions causes calculated energies 
and properties to be significantly less reliable than for CCSD.  Single substitutions play a 
role very similar to orbital optimization, in that they effectively alter the reference 
determinant to be more appropriate for the description of electron correlation (the 
Hartree-Fock determinant is optimized in the absence of electron correlation). 

This suggests an alternative to CCSD and QCISD that has some additional advantages.  
This is the optimized orbital CCD method (OO-CCD), which we normally refer to as 
simply optimized doubles (OD) [20].  The OD method is defined by the CCD equations 
above, plus the additional set of conditions that the cluster energy is minimized with 
respect to orbital variations.  This may be mathematically expressed by: 

 0CCD
a
i

E

θ
∂ =
∂

 (5.30) 

where the rotation angle a
iθ  mixes the ith occupied orbital with the ath virtual (empty) 

orbital.  Thus the orbitals that define the single determinant reference are optimized to 
minimize the coupled cluster energy, and are variationally best for this purpose.  The 
resulting orbitals are approximate Brueckner orbitals. 
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The OD method has the advantage of formal simplicity (orbital variations and single 
substitutions are essentially redundant variables).  In cases where Hartree-Fock theory 
performs poorly (for example artifactual symmetry breaking, or nonconvergence), it is 
also practically advantageous to use the OD method, where the HF orbitals are not 
required, rather than CCSD or QCISD.  Q-Chem supports both energies and analytical 
gradients using the OD method.  The computational cost for the OD energy is more than 
twice that of the CCSD or QCISD method, but the total cost of energy plus gradient is 
roughly similar, although OD remains more expensive.  An additional advantage of the 
OD method is that it can be performed in an active space, as discussed later, in section 
5.7. 

5.5.4 QUADRATIC COUPLED CLUSTER DOUBLES (QCCD) 

The nonvariational determination of the energy in the CCSD, QCISD, and OD methods 
discussed in the above subsections is not normally a practical problem.  However, there 
are some cases where these methods perform poorly.  One such example are potential 
curves for homolytic bond dissociation, using closed shell orbitals, where the calculated 
energies near dissociation go significantly below the true energies, giving potential 
curves with unphysical barriers to formation of the molecule from the separated 
fragments [21].  The Quadratic Coupled Cluster Doubles (QCCD) method [22] recently 
proposed by Troy Van Voorhis at Berkeley uses a different energy functional to yield 
improved behavior in problem cases of this type.  Specifically, the QCCD energy 
functional is defined as: 

 ( ) ( )21
0 2 2 2 02

ˆ ˆ ˆ ˆ1 expQCCD
C

E H T= Φ + Λ + Λ Φ  (5.31) 

where the amplitudes of both the 2̂T  and 2Λ̂  operators are determined by minimizing the 
QCCD energy functional.  Additionally, the optimal orbitals are determined by 
minimizing the QCCD energy functional with respect to orbital rotations mixing 
occupied and virtual orbitals. 

To see why the QCCD energy should be an improvement on the OD energy, we first 
write the latter in a different way than before.  Namely, we can write a CCD energy 
functional which when minimized with respect to the 2̂T  and 2Λ̂  operators, gives back 
the same CCD equations defined earlier.  This energy functional is: 

 ( ) ( )0 2 2 0
ˆ ˆ ˆ1 expCCD

C
E H T= Φ + Λ Φ  (5.32) 

Minimization with respect to the 2Λ̂  operator gives the equations for the 2̂T  operator 
presented previously, and, if those equations are satisfied then it is clear that we do not 
require knowledge of the 2Λ̂  operator itself to evaluate the energy. 
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Comparing the two energy functionals, (5.31) and (5.32), we see that the QCCD 

functional includes up through quadratic terms of the Maclaurin expansion of ( )2exp Λ
�

 

while the conventional CCD functional includes only linear terms.  Thus the bra 
wavefunction and the ket wavefunction in the energy expression are treated more 
equivalently in QCCD than in CCD.  This makes QCCD closer to a true variational 
treatment [21] where the bra and ket wavefunctions are treated precisely equivalently, 
but without the exponential cost of the variational method. 

In practice QCCD is a dramatic improvement relative to any of the conventional pair 
correlation methods for processes involving more than two active electrons (i.e. the 
breaking of at least a double bond, or, two spatially close single bonds).  For example 
calculations, we refer to the original paper [22], and the follow-up paper describing the 
full implementation [23].  We note that these improvements carry a computational price.  
While QCCD scales formally with the 6th power of molecule size like CCSD, QCISD, 
and OD, the coefficient is substantially larger.  For this reason, QCCD calculations are 
by default performed as OD calculations until they are partly converged. 
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5.5.5 JOB CONTROL OPTIONS 

There are a large number of options for the coupled cluster singles and doubles methods.  
They are documented in Appendix C, and, as the reader will find upon following this 
link, it is an extensive list indeed.  Fortunately, many of them are not necessary for 
routine jobs.  Most of the options for non-routine jobs concern altering the default 
iterative procedure, which is most often necessary for optimized orbital calculations (OD, 
QCCD), as well as the active space methods discussed later in Section 5.7.  The more 
common options relating to convergence control are discussed there, in Section 5.7.5.  
Below we list the options that one should be aware of for routine calculations. 

CC_CONVERGENCE 
Overall convergence criterion for the coupled cluster codes.  This is designed to 
ensure at least n significant digits in the calculated energy, and automatically sets 
the other convergence-related variables (CC_E_CONV, CC_T_CONV, 
CC_THETA_CONV, CC_THETA_GRAD_CONV, CC_Z_CONV) [10**(-n)] 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

8  energies 
8   gradients 

OPTIONS 
 n  10**(-n) convergence criterion 

 
CC_DOV_THRESH 

Specifies minimum allowed values for the coupled cluster energy denominators.  
Smaller values are replaced by this constant during early iterations only, so the 
final results are unaffected, but initial convergence is improved when the guess is 
poor. 

 VARIABLE: 
  DOUBLE  Integer code abcde is mapped to abc * 10**(-de) 
 DEFAULT: 

0.25 
RECOMMENDATION: 
 Increase to 0.5 or 0.75 for nonconvergent coupled cluster calculations. 

 
CC_MAXITER 

Maximum number of iterations to optimize the coupled cluster energy.  
 VARIABLE: 
  INTEGER 
 DEFAULT: 

200 
OPTIONS: 
 n  up to n iterations to achieve convergence  
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CC_PRINT 
 Controls the output from post-MP2 coupled cluster module of Q-Chem 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1  
 OPTIONS: 
  0 

�
 7  Higher values can lead to deforestation…  
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5.5.6 EXAMPLES 

$molecule 
0 2 
n 
h1 n 1.02805 
h2 n 1.02805 h1 103.337613 
$end 
 
$rem 
correlation         ccsd 
basis               6-31g* 
n_frozen_core       fc 
$end 
 
@@@ 
$molecule 
0 2 
n 
h1 n 1.02805 
h2 n 1.02805 h1 103.337613 
$end 
 
$rem 
correlation         od 
basis               6-31g* 
n_frozen_core       fc 
$end 
 
$molecule 
0 2 
n 
h1 n 1.02805 
h2 n 1.02805 h1 103.337613 
$end 
 
$rem 
correlation         qccd 
basis               6-31g* 
n_frozen_core       fc 
$end 

Example 5.4 A series of jobs evaluating the correlation energy (with core orbitals 
frozen) of the ground state of the NH2 radical with three methods of 
coupled cluster singles and doubles type: CCSD itself, OD, and QCCD. 
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5.6 NON-ITERATIVE CORRECTIONS TO COUPLED CLUSTER ENERGIES 

5.6.1 (T) TRIPLES CORRECTIONS 

To approach chemical accuracy in reaction energies and related properties, it is necessary 
to account for electron correlation effects that involve 3 electrons simultaneously, as 
represented by triple substitutions relative to the mean field single determinant reference, 
which arise in MP4.  The best standard methods for including triple substitutions are the 
CCSD(T) [24] and QCISD(T) methods [19]  The accuracy of these methods is well -
documented for many cases [25], and in general is a very significant improvement 
relative to the starting point (either CCSD or QCISD).  The cost of these corrections 
scales with the 7th power of molecule size (or the 4th power of the number of basis 
functions for fixed molecule size), although no additional disk resources are required 
relative to the starting coupled cluster calculation.  Q-Chem supports the evaluation of 
CCSD(T) and QCISD(T) energies, as well as the corresponding OD(T) correction to the 
optimized doubles method discussed in the previous subsection.  Gradients are not 
currently available for any of these (T) corrections. 

5.6.2 (2) TRIPLES AND QUADRUPLES CORRECTIONS 

While the (T) corrections discussed above have been extraordinarily successful, there is 
nonetheless still room for further improvements in accuracy, for at least some important 
classes of problems.  They contain judiciously chosen terms from 4th and 5th order Moller-
Plesset perturbation theory, as well as higher order terms that result from the fact that the 
converged cluster amplitudes are employed to evaluate the 4th and 5th order terms. The 
(T) correction therefore depends upon the bare reference orbitals and orbital energies, 
and in this way its effectiveness still depends on the quality of the reference determinant.  
Since we are correcting a coupled cluster solution rather than a single determinant, this is 
an aspect of the (T) corrections that can be improved.  Deficiencies of the (T) corrections 
show up computationally in cases where there are near-degeneracies between orbitals, 
such as stretched bonds, some transition states, open shell radicals, and biradicals. 

Recently, Steve Gwaltney working at Berkeley with Martin Head-Gordon has suggested 
a new class of noniterative correction that offers the prospect of improved accuracy in 
problem cases of the types identified above [26].  Q-Chem contains Gwaltney’s 
implementation of this new method, for energies only.  The new correction is a true 
second order correction to a coupled cluster starting point, and is therefore denoted as 
(2).  It is available for 2 of the cluster methods discussed above, as OD(2) and  CCSD(2) 
[26,27].  Only energies are available at present. 

The basis of the (2) method is to partition not the regular Hamiltonian into perturbed and 
unperturbed parts, but rather to partition a similarity-transformed Hamiltonian, defined as 

ˆ ˆˆ ˆT TH e He−= .  In the truncated space (call it the p-space) within which the cluster 
problem is solved (e.g. singles and doubles for CCSD), the coupled cluster wavefunction 

is a true eigenvalue of Ĥ .  Therefore we take the zero order Hamiltonian, (0)Ĥ , to be the 
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full Ĥ  in the p-space, while in the space of excluded substitutions (the q-space) we take 

only the one-body part of Ĥ  (which can be made diagonal).  The fluctuation potential 

describing electron correlations in the q-space is (0)ˆ ˆH H− , and the (2) correction then 
follows from second order perturbation theory. 

The new partitioning of terms between the perturbed and unperturbed Hamiltonians 
inherent in the (2) correction leads to a correction that shows both similarities and 
differences relative to the existing (T) corrections.  There are two types of higher 
correlations that enter at second order: not only triple substitutions, but also quadruple 
substitutions.  The quadruples are treated with a factorization ansatz, that is exact in 5th 
order Moller-Plesset theory [28], to reduce their computational cost from N9 to N6.  For 
large basis sets this can still be larger than the cost of the triples terms, which scale as the 
7th power of molecule size, with a factor twice as large as the usual (T) corrections. 

These corrections are feasible for molecules containing between four and ten first row 
atoms, depending on computer resources, and the size of the basis set chosen.  There is 
early evidence that the (2) corrections are superior to the (T) corrections for highly 
correlated systems [26].  This shows up in improved potential curves, particularly at long 
range and may also extend to improved energetic and structural properties at equili brium 
in problematical cases.  It will be some time before suff icient testing on the new (2) 
corrections has been done to permit a general assessment of the performance of these 
methods.  However, they are clearly very promising, and for this reason they are 
available in Q-Chem. 
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5.6.3 JOB CONTROL OPTIONS 

The evaluation of a noniterative (T) or (2) correction after a coupled cluster singles and 
doubles level calculation (either CCSD, QCISD or OD) is controlled by the correlation 
keyword, and the specification of any frozen orbitals via N_FROZEN_CORE (and 
possibly N_FROZEN_VIRTUAL). 

There is only one additional job control option.  For the (2) correction, it is possible to 
apply the frozen core approximation in the reference coupled cluster calculation, and 
then correlate all orbitals in the (2) correction.  This is controlled by 
CC_INCL_CORE_CORR, described below. 

The default is to include core and core-valence correlation automatically in the CCSD(2) 
or OD(2) correction, if the reference CCSD or OD calculation was performed with 
frozen core orbitals.  The reason for this choice is that core correlation is economical to 
include via this method (the main cost increase is only linear in the number of core 
orbitals), and such effects are important to account for in accurate calculations.  This 
option should be made false if a job with explicitly frozen core orbitals is desired.  One 
good reason for freezing core orbitals in the correction is if the basis set is physically 
inappropriate for describing core correlation (e.g. standard Pople basis sets, and Dunning 
cc-pVxZ basis sets are designed to describe valence-only correlation effects).  Another 
good reason is if a direct comparison is desired against another method such as CCSD(T) 
which is always used in the same orbital window as the CCSD reference. 

 
CC_INCL_CORE_CORR 

Whether to include the correlation contribution from frozen core orbitals in 
noniterative (2) corrections, such as OD(2) and CCSD(2).  

 VARIABLE: 
  LOGICAL 
 DEFAULT: 

TRUE 
 OPTIONS: 
 RECOMMENDATION: 

Use default unless no core-valence or core correlation is desired (e.g. for 
comparison with other methods or because the basis used cannot describe 
core correlation). 
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5.6.4 EXAMPLES 

$molecule 
0 2 
o 
h o 0.97907 
$end 
 
$rem 
correlation          CCSD(T) 
basis                cc-pVTZ 
n_frozen_core        fc 
$end 
 
@@@ 
$molecule 
0 2 
o 
h o 0.97907 
$end 
 
$rem 
correlation          CCSD(2) 
basis                cc-pVTZ 
n_frozen_core        fc 
cc_incl_core_corr    false 
$end 

Example 5.5 Two jobs that compare the correlation energy calculated via the standard 
CCSD(T) method with the new CCSD(2) approximation, both using the 
frozen core approximation.  This requires that CC_INCL_CORE_CORR 
must be specified as false in the CCSD(2) input. 

 



Chapter 5: Wavefunction-Based Correlation Methods  125 

5.7 COUPLED CLUSTER ACTIVE SPACE METHODS 

5.7.1 INTRODUCTION 

Electron correlation effects can be qualitatively divided into two classes.  The first class 
is static or nondynamical correlation: long wavelength low-energy correlations associated 
with other electron configurations that are nearly as low in energy as the lowest energy 
configuration.  These correlation effects are important for problems such as homolytic 
bond breaking, and are the hardest to describe because by definition the single 
configuration Hartree-Fock description is not a good starting point.  The second class is 
dynamical correlation:  short wavelength high-energy correlations associated with 
atomic-like effects.  Dynamical correlation is essential for quantitative accuracy, but a 
reasonable description of static correlation is a prerequisite for a calculation being 
qualitatively correct. 

In the methods discussed in the previous several subsections, the objective was to 
approximate the total correlation energy.  However, in some cases, it is useful to instead 
directly model the nondynamical and dynamical correlation energies separately.  The 
reasons for this are pragmatic:  with approximate methods, such a separation can give a 
better balanced treatment of electron correlation along bond-breaking coordinates, or 
reaction coordinates that involve biradicaloid intermediates.  The nondynamical 
correlation energy is conveniently defined as the solution of the Schrodinger equation 
within a small basis set composed of valence bonding, antibonding and lone pair orbitals: 
the so-called full valence active space.  Solved exactly, this is the so-called full valence 
complete active space SCF (CASSCF) [29], or equivalently, the fully optimized reaction 
space (FORS) method [30]. 

Full valence CASSCF and FORS involve computational complexity which increases 
exponentially with the number of atoms, and is thus unfeasible beyond systems of only a 
few atoms, unless the active space is further restricted on a case-by-case basis.  Q-Chem 
includes two relatively economical methods that directly approximate these theories 
using a truncated coupled cluster doubles wave function with optimized orbitals [31].  
They are active space generalizations of the OD and QCCD methods discussed 
previously in Sections 5.5.3 and 5.5.4, and are discussed in the following two 
subsections.  By contrast with the exponential growth of computational cost with 
problem size associated with exact solution of the full valence CASSCF problem, these 
cluster approximations have only 6th order growth of computational cost with problem 
size, while often providing useful accuracy. 

The full valence space is a well-defined theoretical chemical model.  For these active 
space coupled cluster doubles methods, it consists of the union of valence levels that are 
occupied in the single determinant reference, and those that are empty.  The occupied 
levels that are to be replaced can only be the occupied valence and lone pair orbitals, 
whose number is defined by the sum of the valence electron counts for each atom (i.e. 1 
for H, 2 for He, 1 for Li, etc.).  At the same time, the empty  virtual orbitals to which the 
double substitutions occur are restricted to be empty (usually antibonding) valence 
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orbitals.  Their number is the difference between the number of valence atomic orbitals, 
and the number of occupied valence orbitals given above.  This definition (the full 
valence space) is the default when either of the “valence” active space methods are 
invoked (VOD or VQCCD) 

There is also a second useful definition of a valence active space, which we shall call the 
1:1 or perfect pairing active space.  In this definition, the number of occupied valence 
orbitals remains the same as above.  The number of empty correlating orbitals in the 
active space is defined as being exactly the same number, so that each occupied orbital 
may be regarded as being associated 1:1 with a correlating virtual orbital.  In the water 
molecule, for example, this means that the lone pair electrons as well as the bond-orbitals 
are correlated.  Generally the 1:1 active space recovers more correlation for molecules 
dominated by elements on the right of the periodic table, while the full valence active 
space recovers more correlation for molecules dominated by atoms to the left of the 
periodic table. 

If you wish to specify either the 1:1 active space as described above, or some other 
choice of active space based on your particular chemical problem, then you must specify 
the numbers of active occupied and virtual orbitals.  This is done via the standard 
“window options” , documented earlier in the chapter. 

Finally we note that the entire discussion of active spaces here leads only to specific 
numbers of active occupied and virtual orbitals.  The orbitals that are contained within 
these spaces are optimized by minimizing the trial energy with respect to all the degrees 
of freedom previously discussed: the substitution amplitudes, and the orbital rotation 
angles mixing occupied and virtual levels.  In addition, there are new orbital degrees of 
freedom to be optimized to obtain the best active space of the chosen size, in the sense of 
yielding the lowest coupled cluster energy.  Thus rotation angles mixing active and 
inactive occupied orbitals must be varied until the energy is stationary.  Denoting 
inactive orbitals by primes and active orbitals without primes this corresponds to 
satisfying: 

 0CCD
j

i

E

θ ′
∂ =
∂

 (5.33) 

Likewise the rotation angles mixing active and inactive virtual orbitals must also be 
varied until the coupled cluster energy is minimized with respect to these degrees of 
freedom. 
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5.7.2 VOD AND VOD(2) METHODS 

The VOD method is the active space version of the OD method described earlier in Sec. 
5.5.3.  Both energies and gradients are available for VOD, so structure optimization is 
possible.  There are a few important comments to make about the usefulness of VOD.  
First, it is a method that is capable of accurately treating problems that fundamentally 
involve 2 active electrons in a given local region of the molecule.  It is therefore a good 
alternative for describing single bond-breaking, or torsion around a double bond, or some 
classes of diradicals.  However it often performs poorly for problems where there is more 
than one bond being broken in a local region, with the nonvariational solutions being 
quite possible.  For such problems the newer VQCCD method is substantially more 
reliable. 

Assuming that VOD is a valid zero order description for the electronic structure, then a 
second order correction, VOD(2), is available for energies only.  VOD(2) is a version of 
OD(2) generalized to valence active spaces.  It permits more accurate calculations of 
relative energies by accounting for dynamical correlation. 

5.7.3 VQCCD 

The VQCCD method is the active space version of the QCCD method described earlier 
in Sec. 5.5.3.  Both energies and gradients are available for VQCCD, so that structure 
optimization is possible.  VQCCD is applicable to a substantially wider range of 
problems than the VOD method, because the modified energy functional is not 
vulnerable to nonvariational collapse.  Testing to date suggests that it is capable of 
describing double bond breaking to similar accuracy as full valence CASSCF, and that 
potential curves for triple bond-breaking are qualitatively correct, although quantitatively 
in error by a few 10’s of kcal/mol.  The computational cost scales in the same manner 
with system size as the VOD method, albeit with a significantly larger prefactor.  
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5.7.4  CONVERGENCE STRATEGIES AND MORE ADVANCED OPTIONS 

These optimized orbital coupled cluster active space methods enable the use of the full 
valence space for larger systems than is possible with conventional complete active space 
codes.  However, we should note at the outset that often there are substantial challenges 
in converging valence active space calculations (and even sometimes optimized orbital 
coupled cluster calculations without an active space).  Active space calculations cannot 
be regarded as “ routine” calculations in the same way as SCF calculations, and often 
require a considerable amount of computational trial and error to persuade them to 
converge.  These diff iculties are largely because of strong coupling between the orbital 
degrees of freedom and the amplitude degrees of freedom, as well as the fact that the 
energy surface is often quite flat with respect to the orbital variations defining the active 
space. 

Being aware of this at the outset, and realizing that the program has nothing against you 
personally is useful information for the uninitiated user of these methods.  What the 
program does have, to assist in the struggle to achieve a converged solution, are 
accordingly many convergence options, fully documented in Appendix C.  In this 
section, we describe the basic options and the ideas behind using them as a starting point.  
Experience plays a criti cal role, however, and so we encourage you to experiment with 
toy jobs that give rapid feedback in order to become proficient at diagnosing problems. 

If the default procedure fails to converge, the first useful option to employ is 
CC_PRECONV_T2Z, with a value of between 10 and 50.  This is useful for jobs in 
which the MP2 amplitudes are very poor guesses for the converged cluster amplitudes, 
and therefore initial iterations varying only the amplitudes will be beneficial: 

CC_PRECONV_T2Z 
Whether to pre-converge the cluster amplitudes before beginning orbital 
optimization in optimized orbital cluster methods.  
VARIABLE: 

INTEGER 
DEFAULT: 

0   (FALSE) 
10   If CC_RESTART, CC_RESTART_NO_SCF or 

CC_MP2NO_GUESS are TRUE 
OPTIONS: 

0   No pre-convergence before orbital optimization. 
n   Up to n iterations in this pre-convergence procedure.  

RECOMMENDATION 
Experiment with this option in cases of convergence failure. 
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Other options that are useful include those that permit some damping of step sizes, and 
modify or disable the standard DIIS procedure.  The main choices are as follows: 

CC_DIIS 
Specify the version of Pulay's Direct Inversion of the Iterative Subspace (DIIS) 
convergence accelerator to be used in the coupled cluster code. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 

OPTIONS: 
0   Activates procedure 2 initially, and procedure 1 when 

gradients are smaller than DIIS12_SWITCH.  
1   Uses error vectors defined as differences between parameter 

vectors from successive iterations.  Most efficient near 
convergence.  

2   Error vectors are defined as gradients scaled by square root 
of the approximate diagonal Hessian.  Most efficient far 
from convergence. 

RECOMMENDATION 
DIIS1 can be more stable.  If DIIS problems are encountered in the early 
stages of a calculation (when gradients are large) try DIIS1. 

 
CC_DIIS_START 

Iteration number when DIIS is turned on.  Set to a large number to disable DIIS. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 

3 
RECOMMENDATION 

Occasionally DIIS can cause optimized orbital coupled cluster calculations 
to diverge through large orbital changes.  If this is seen, DIIS should be 
disabled. 
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CC_DOV_THRESH 
Specifies minimum allowed values for the coupled cluster energy denominators.  
Smaller values are replaced by this constant during early iterations only, so the 
final results are unaffected, but initial convergence is improved when the guess is 
poor. 

 VARIABLE: 
  DOUBLE  Integer code abcde is mapped to abc * 10**(-de) 
 DEFAULT: 

0.25 
RECOMMENDATION: 
 Increase to 0.5 or 0.75 for nonconvergent coupled cluster calculations. 

 
CC_THETA_STEPSIZE 

Scale factor for the orbital rotation step size. The optimal rotation steps should be 
approximately equal to the gradient vector.  
VARIABLE: 

DOUBLE Integer code abcde is mapped to abc * 10**(-de) 

DEFAULT: 
1.0  If the initial step is smaller than 0.5, the program will 

increase step when gradients are smaller than the value of  
THETA_GRAD_THRESH, up to a limit of 0.5.  

RECOMMENDATION: 
Try a smaller value in cases of poor convergence and very large orbital 
gradients.  For example, a value of 01000 translates to 0.1 

 

An even stronger more or less last resort option permits iteration of the cluster 
amplitudes without changing the orbitals: 

CC_PRECONV_T2Z_EACH 
Whether to pre-converge the cluster amplitudes before each change of the orbitals 
in optimized orbital coupled cluster methods.  The maximum number of iterations 
in this pre-convergence procedure is given by the value of this parameter.  

 VARIABLE: 
  INTEGER 
 DEFAULT: 

0   (FALSE) 
OPTIONS: 

0   No pre-convergence before orbital optimization. 
n   Up to n iterations in this pre-convergence procedure.  

RECOMMENDATION: 
A very slow last resort option for jobs that do not converge. 
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5.7.5 EXAMPLES 

$molecule 
0    1 
o 
h    1    r 
h    1    r    a 
 
r=1.5 
a=104.5 
$end 
 
$rem 
correlation          VOD 
exchange             HF 
basis                6-31G 
$end 
 
@@@ 
$molecule 
READ 
$end 
 
$rem 
correlation          VQCCD 
exchange             HF 
basis                6-31G 
$end 
 

Example 5.5 Two jobs that compare the correlation energy of the water molecule with 
partially stretched bonds, calculated via the two coupled cluster active 
space methods, VOD, and VQCCD.  These are relatively “easy” jobs to 
converge, and may be contrasted with the next example, which is not 
easy to converge.  The orbitals are restricted. 
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$molecule 
0    1 
o 
h    1    r 
h    1    r    a 
 
r=3.0 
a=104.5 
$end 
 
$rem 
correlation          VOD 
exchange             HF 
basis                6-31G 
scf_convergence      9 
thresh               12 
cc_preconv_t2z       50 
cc_preconv_t2z_each  50 
cc_dov_thresh        7500 
cc_theta_stepsize    3200 
cc_diis_start        75 
$end 
 
@@@ 
$molecule 
READ 
$end 
 
$rem 
correlation          VQCCD 
exchange             HF 
basis                6-31G 
scf_convergence      9 
thresh               12 
cc_preconv_t2z       50 
cc_preconv_t2z_each  50 
cc_dov_thresh        7500 
cc_theta_stepsize    3200 
cc_diis_start        75 
$end 

Example 5.6 The water molecule with highly stretched bonds, calculated via the two 
coupled cluster active space methods, VOD, and VQCCD.  These are 
“diff icult” jobs to converge. The convergence options shown permitted 
the job to converge after some experimentation (thanks due to Ed Byrd 
for this!).  The diff iculty of converging this job should be contrasted 
with the previous example where the bonds were less stretched.  In this 
case, the VQCCD method yields far better results than VOD! 
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Equation Section 6 

CHAPTER 6  EXCITED STATE METHODS 

 

6.1 GENERAL EXCITED STATE FEATURES 

As for ground state calculations, performing an adequate excited state calculation 
involves making an appropriate choice of method and basis set.  The development of 
effective approaches to modeling electronic excited states has historically lagged behind 
advances in treating the ground state.  In part this is because of the much greater diversity 
in the character of the wave functions for excited states, making it more diff icult to 
develop broadly applicable methods without molecule-specific or even state-specific 
specification of the form of the wave function.  Recently, however, a hierarchy of single-
reference ab initio methods has begun to emerge for the treatment of excited states.  
Broadly speaking, Q-Chem contains methods that are capable of giving qualitative 
agreement, and in many cases quantitative agreement with experiment for lower optically 
allowed states.  The situation is less satisfactory for states that involve bi-electronic 
excitations, although even here reasonable results can sometimes be obtained.   

In excited state calculations, as for ground state calculations, the user must strike a 
compromise between cost and accuracy.  The first three main sections of this chapter 
summarize Q-Chem’s capabiliti es in 3 general classes of excited state methods: 

• Single-electron wavefunction-based methods (Section 6.2).  These are excited 
state treatments of roughly the same level of sophistication as the Hartree-Fock 
ground state method, in the sense that electron correlation is essentially ignored.  
Single excitation configuration interaction (CIS) is the workhorse method of this 
type. 

• Time-dependent density functional theory (TDDFT) (Section 6.3).  TDDFT is the 
most useful extension of density functional theory to excited states that has been 
developed so far.  For a cost that is littl e greater than the simple wavefunction 
methods such as CIS, a significantly more accurate method results. 

• Wavefunction-based electron correlation treatments (Section 6.4)  Roughly 
speaking, these are excited state analogs of the ground state wavefunction-based 
electron correlation methods discussed in Chapter 5.  They are more accurate than 
the methods of Section 6.2, but also dramatically more computationally 
expensive. 

In general, a basis set appropriate for a ground state density functional theory or Hartree-
Fock calculations will be appropriate for describing valance excited states. However, 
many excited states involve significant contributions from very diffuse Rydberg orbitals, 
and, therefore, it is often advisable to use basis sets that include additional diffuse 
functions. The 6-31+G* basis set is a reasonable compromise for the low-lying valence 
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excited states of many organic molecules, but to describe true Rydberg excited states, 
Q-Chem allows the user to add second and higher sets of diffuse functions (see Chapter 
7), as in basis sets of the 6-311(2+)G* type, that are generally adequate for description of 
both valence and Rydberg excited states. 

Q-Chem supports three main types of excited state calculation: 

• Vertical absorption spectrum 
This is the calculation of the excited states of the molecule at the ground state 
geometry, as appropriate for absorption spectroscopy. The methods supported for 
performing a vertical absorption calculation are: CIS, RPA, XCIS and CIS(D), each 
of which will be discussed in turn. In addition, it is possible to visualise the excited 
states either by attachment-detachment density analysis or by plotting the transition 
density (see $plots descriptions in chapters 3 and 10). The visual analysis options are 
available only for the CIS method, and the theoretical basis of this method is 
discussed in Section 6.4 of this chapter. 

• Excited state optimization 
Optimization of the geometry of stationary points on excited state potential energy 
surfaces is valuable for understanding the geometric relaxation that occurs between 
the ground and excited state. Excited state optimization is currently available for 
UCIS and RCIS only. 

• Excited state vibrational analysis 
Given an optimised excited state geometry, Q-Chem can calculate the force constants 
at the stationary point to predict excited state vibrational frequencies. Stationary 
points can also be characterized as minima, transition structures or nth-order saddle 
points. Excited state vibrational analyses can only be performed using the UCIS and 
RCIS methods, for which efficient analytical second derivatives are available. 

 

6.2 NON-CORRELATED WAVEFUNCTION METHODS 

Q-Chem includes several excited state methods which do not incorporate correlation: 
CIS, XCIS and RPA. These methods are sufficiently inexpensive that calculations on 
large molecules are possible, and are roughly comparable to the HF treatment of the 
ground state in terms of performance. They tend to yield qualitative rather than 
quantitative insight.  Excitation energies tend to exhibit errors on the order of an electron 
volt, consistent with the neglect of electron correlation effects, which are generally 
different in the ground state and the excited state. 

6.2.1 SINGLE EXCITATION CONFIGURATION INTERACTION (CIS) 

The derivation of the CI-singles [1,2] energy and wave function begins by selecting the 
HF single determinantal wave function as reference for the ground state of the system 
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where n is the number of electrons, and the spin orbitals 

 
N

i icµ µ
µ

χ φ= ∑  (6.2) 

are expanded in a finite basis of N atomic orbital basis functions. Molecular orbital 
coefficients {cµi} are usually found by SCF procedures which solve the Hartree-Fock 
equations 

 =FC SCεε  (6.3) 

where S is the overlap matrix, C is the matrix of molecular orbital coefficients, εε is a 
diagonal matrix of orbital eigenvalues and F is the Fock matrix with elements 
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involving the core Hamiltonian and the antisymmetrized two-electron integrals 
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On solving (6.3), the total energy of the ground state single determinant can be expressed 
as 
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where PHF is the HF density matrix and Vnuc is the nuclear repulsion energy. 

Equation (6.1) represents only one of many possible determinants made from orbitals of 
the system; there are in fact n(N - n) possible singly substituted determinants constructed 
by replacing an orbital occupied in the ground state (i, j, k,...) with an orbital unoccupied 
in the ground state (a, b, c, ...). Such wave functions and energies can be written 

 { }1 2

1
det
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n
χ χ χ χ χΨ = � �  (6.7) 

 ( )||ia HF a iE E ia iaε ε= + − −  (6.8) 

where we have introduced the antisymmetrized two-electron integrals in the molecular 
orbital basis 
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These singly excited wave functions and energies could be considered crude 
approximations to the excited states of the system. However, determinants of the form 
(6.7) are deficient in that they: 

(1) do not yield pure spin states 
(2) resemble more closely ionization rather than excitation 
(3) are not appropriate for excitation into degenerate states 
 
These deficiencies can be partially overcome by representing the exited state 
wavefunction as a linear combination of all possible singly excited determinants 

 a a
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where the coeff icients { aia
} can be obtained by diagonalizing the many-electron 

Hamiltonian, A, in the space of all single substitutions, where the matrix elements are 
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By Brill ouin’s theorem single substitutions do not interact directly with a reference HF 
determinant, so the resulting eigenvectors from the CIS excited state represent a 
treatment roughly comparable to that of the HF ground state. The excitation energy is 
simply the difference between HF ground state energy and CIS excited state energies, 
and the eigenvectors of A correspond to the amplitudes of the single-electron promotions. 

CIS calculations can be performed in Q-Chem using restricted (RCIS) [1,2], unrestricted 
(UCIS), or restricted open shell (ROCIS) [3] spin orbitals. 

6.2.2 RANDOM PHASE APPROXIMATION (RPA) 

The Random Phase Approximation (RPA) [4,5] is an alternative to CIS for uncorrelated 
calculations of excited states. It offers some advantages for computing oscill ator 
strengths, and is roughly comparable in accuracy to CIS for excitation energies to singlet 
states, but is inferior for triplet states. RPA energies are non-variational. 

6.2.3 EXTENDED CIS (XCIS) 

The motivation for the extended CIS procedure (XCIS) [6] stems from the fact that 
ROCIS and UCIS are less effective for radicals that CIS is for closed shell molecules. 
Using the attachment-detachment density analysis procedure [7], the faili ng of ROCIS 
and UCIS methodologies for the nitromethyl radical was traced to the neglect of a 
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particular class of double substitution which involves the simultaneous promotion of an α 
spin electron from the singly occupied orbital and the promotion of a β spin electron into 
the singly occupied orbital. In particular, the spin adapted configurations 

 ( )1 2
(1)

6 6
a a a ap
i ii piΨ = Ψ − Ψ + Ψ

�

 (6.12) 

(where a, b, c ... are virtual orbitals,  i, j, k ... are occupied orbitals and, p, q, r ... are 
singly occupied orbitals) are of crucial importance and , it is quite likely that similar 
excitations are also very significant in other radicals of interest. 

The XCIS proposal, a more satisfactory generalization of CIS to open shell molecules, is 
to simultaneously include a restricted class of double substitutions similar to those in 
(6.12). To illustrate this, consider the resulting orbital spaces of an ROHF calculation: 
doubly occupied (d), singly occupied (s) and virtual (v). From this starting point we can 
distinguish three types of single excitations of the same multiplicity as the ground state: d 
→ s, s → v and d → v. Thus, the spin adapted ROCIS wave function is 

 ( )1

2

dv sv ds
a a a a a p p

ROCIS i i p pi i i
ia pa ip

a a aΨ = Ψ + Ψ + Ψ + Ψ∑ ∑ ∑  (6.13) 

The extension of CIS theory to incorporate higher excitations maintains the ROHF as the 
ground state reference and adds terms to the ROCIS wave function similar to that of 
equation (6.13), as well as those where the double excitation occurs through different 
orbitals in the α and β space 
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dv sv ds
a a a a a p p

XCIS i i p pi i i
ia pa ip

dv ssdvs
a a aq aq
i i pi pi

iap ia p q

a a a

a p p a
≠

Ψ = Ψ + Ψ + Ψ + Ψ +

Ψ + Ψ

∑ ∑ ∑

∑ ∑
�

�

 (6.14) 

XCIS is defined only from a restricted open shell Hartree-Fock ground state reference, as 
it would be difficult to uniquely define singly occupied orbitals in a UHF wave function. 
In addition, β unoccupied orbitals, through which the spin-flip double excitation 
proceeds, may not match the half-occupied α orbitals in either character or even 
symmetry. 

For molecules with closed shell ground states, both the HF ground and CIS excited states 
emerge from diagonalization of the Hamiltonian in the space of the HF reference and 
singly excited substituted configuration state functions. The XCIS case is different 
because the restricted class of double excitations included could mix with the ground 
state and lower its energy. This mixing is avoided to maintain the size consistency of the 
ground state energy. 
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With the inclusion of the restricted set of doubles excitations in the excited states, but not 
in the ground state, it could be expected that some fraction of the correlation energy be 
recovered, resulting in anomalously low excited state energies. However, the fraction of 
the total number of doubles excitations included in the XCIS wave function is very small 
and those introduced cannot account for the pair correlation of any pair of electrons. 
Thus, the XCIS procedure can be considered one that neglects electron correlation. 

The computational cost of XCIS is approximately four times greater than CIS and 
ROCIS, and its accuracy for open shell molecules is generally comparable to that of the 
CIS method for closed shell molecules. In general, it achieves qualitative agreement with 
experiment.  XCIS is available for doublet and quartet excited states beginning from a 
doublet ROHF treatment of the ground state, for excitation energies only. 

6.2.4 BASIC JOB CONTROL OPTIONS 

See also JOBTYPE, BASIS, EXCHANGE and CORRELATION. EXCHANGE must be HF 
and CORRELATION must be NONE.  The minimum input required above a ground state 
HF calculation is to specify a nonzero value for CIS_N_ROOTS. 

CIS_N_ROOTS 
 Sets the number of CI-Singles (CIS) excited state roots to find 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0  Do not look for any excited states 
 OPTIONS: 
  n > 0  Looks for n CIS excited states 
 
CIS_SINGLETS 
 Solve for singlet excited states in RCIS calculations (ignored for UCIS) 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  True  Solve for singlet states 
 OPTIONS: 
  True   Solve for singlet states 
  False   Do not solve for singlet states 
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CIS_TRIPLETS 
 Solve for triplet excited states in RCIS calculations (ignored for UCIS) 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  True  Solve for triplet states 
 OPTIONS: 
  True   Solve for triplet states 
  False   Do not solve for triplet states 
 
RPA 
 Do an RPA calculation in addition to a CIS calculation 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Do not do an RPA calculation 
 OPTIONS: 
  False   Do not do an RPA calculation 
  True  Do an RPA calculation 
 
XCIS 
 Do an XCIS calculation in addition to a CIS calculation 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Do not do an XCIS calculation 
 OPTIONS: 
  False   Do not do an XCIS calculation 
  True  Do an XCIS calculation (requires ROHF ground state) 
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6.2.5 CUSTOMIZATION 

N_FROZEN_CORE 
 Controls the number of frozen core orbitals 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 No frozen core orbitals 
 OPTIONS: 
  FC Frozen core approximation 
  n Freeze n core orbitals 
 RECOMMENDATIONS: 

There is no computational advantage to using frozen core for CIS, and 
analytical derivatives are only available when no orbitals are frozen.  It is 
helpful when calculating CIS(D) corrections (see Sec. 6.4). 

 
N_FROZEN_VIRTUAL 
 Controls the number of frozen virtual orbitals. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 No frozen virtual orbitals 
 OPTIONS: 
  n Freeze n virtual orbitals 
 RECOMMENDATIONS: 

There is no computational advantage to using frozen virtuals for CIS, and 
analytical derivatives are only available when no orbitals are frozen. 

 
MAX_CIS_CYCLES 
 Maximum number of CIS iterative cycles allowed 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  30 
 OPTIONS: 
  User-defined 
 RECOMMENDATIONS: 
  Default is usually sufficient 
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CIS_CONVERGENCE 
 CIS is considered converged when error is less than 10-CIS_CONVERGENCE 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  6 CIS convergence threshold 10-6 
 OPTIONS: 
  User-defined 
 
CIS_RELAXED_DENSITY 
 Use the relaxed CIS density for attachment/detachment density analysis 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Do not use the relaxed CIS density in analysis 
 OPTIONS: 
  False   Do not use the relaxed CIS density in analysis 
  True   Use the relaxed CIS density in analysis 
 
CIS_GUESS_DISK 
 Read the CIS guess from disk (previous calculation) 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Create a new guess 
 OPTIONS: 
  False   Create a new guess 
  True  Read the guess from disk 
 RECOMMENDATIONS: 
  Requires a guess from previous calculation 
 
CIS_GUESS_DISK_TYPE 
 Determines the type of guesses to be read from disk 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  Nil 
 OPTIONS: 
  0 Read triplets only 
  1 Read triplets and singlets 
  2 Read singlets only 
 RECOMMENDATIONS: 
  Must be specified if CIS_GUESS_DISK is TRUE 
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6.2.6 CIS ANALYTICAL DERIVATIVES 

While CIS excitation energies are relatively inaccurate, with errors of the order of 1eV, 
CIS excited state properties, such as structures and frequencies, are much more useful. 
This is very similar to the manner in which ground state Hartree-Fock (HF) structures 
and frequencies are much more accurate than HF relative energies. Generally speaking, 
for low-lying excited states, it is expected that CIS vibrational frequencies will be 
systematically 10% higher or so relative to experiment [8,9,10]. If the excited states are 
of pure valence character, then basis set requirements are generally similar to the ground 
state. Excited states with partial Rydberg character require the addition of one or 
preferably two sets of diffuse functions. 

Q-Chem includes eff icient analytical first and second derivatives of the CIS energy 
[11,12], to yield analytical gradients, excited state vibrational frequencies, force 
constants, polarizabiliti es, and infrared intensities.  Their evaluation is controlled by two 
REM’s, li sted below.  Analytical gradients can be evaluated for any job where the CIS 
excitation energy calculation itself is feasible. 

JOBTYPE 
 Specifies the type of calculation 
 VARIABLE: 
  STRING 
 DEFAULT: 
  SP  Single point energy 
 OPTIONS: 
  SP  Single point energy 
  FORCE Analytical Force calculation 
  OPT   Geometry Minimization 
  TS  Transition Structure Search 
  FREQ  Frequency Calculation 
 RECOMMENDATION: 
  Defaults to single point 
 
CIS_STATE_DERIV 
 Sets CIS state for excited state optimizations and vibrational analysis 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Does not select any of the excited states 
 OPTIONS: 
  n Select the nth state 
 

The semi-direct method [11] used to evaluate the frequencies is generally similar to the 
semi-direct method used to evaluate Hartree-Fock frequencies for the ground state. 
Memory and disk requirements (see below) are similar, and the computer time scales 
approximately as the cube of the system size for large molecules. 
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The main complication associated with running analytical CIS second derivatives is 
ensuring Q-Chem has suff icient memory to perform the calculations. For most purposes, 
the defaults will be adequate, but if a large calculation fails due to a memory error, then 
the following additional information may be useful in fine tuning the input, and 
understanding why the job failed. Note that the analytical CIS second derivative code 
does not currently support frozen core or virtual orbitals (unlike Q-Chem’s MP2 code). 
Unlike MP2 calculations, applying frozen core/virtual orbital approximations does not 
lead to large computational savings in CIS calculations as all computationally expensive 
steps are performed in the atomic basis. 

The memory requirements for CIS (and HF) analytical frequencies are primarily 
extracted from “C” memory, which is defined as 

 “C” memory = MEMORY_TOTAL - MEMORY (6.15) 

“C” memory must be large enough to contain a number of arrays whose size is 
3*NAtoms*NBasis*NBasis (NAtoms is the number of atoms and NBasis refers to the 
number of basis functions). The value of the $rem variable MEMORY should be set 
suff iciently large to permit eff icient integral evaluation. If too large, it reduces the 
amount of “C” memory available. If too small , the job may fail due to insuff icient scratch 
space. For most purposes, a value of about 5MW is suff icient and by default 
MEMORY_TOTAL is set to a very large number (large than physical memory on most 
computers) and thus malloc (memory allocation) errors may occur on jobs where the 
memory demands exceeds physical memory. 
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6.2.7 EXAMPLES 

$molecule  
   0 1  
   C  
   O,1,CO  
   H,1,CH,2,A  
   H,1,CH,2,A,3,D  
 
   CO = 1.2  
   CH = 1.0  
   A  = 120.0  
   D  = 180.0  
$end  
 
$rem 
   jobtype           =  opt  
   exchange         =  HF  
   basis            =  6 - 31G*  
$end  
 
@@@ 
$molecule  
   READ  
$end  
 
$rem 
   exchange         =  HF  
   basis            =  6 - 311(2+)G*  
   cis_n_roots      =  15            Do 15 states  
   cis_singlets     =  true          Do    do singlets  
   cis_triplets     =  false         Don't do Triplets  
$end  
 

Example 6.1 A basic CIS excitation energy calculation on formaldehyde at the HF/6-
31G* optimized ground state geometry, which is obtained in the first part 
of the job.  Above the first singlet excited state, the states have Rydberg 
character, and therefore a basis with two sets of diffuse functions is used. 
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$comment 
   C6H5 phenyl radical C2v symmetry mp2(full)/6-31g* = -
230.7777459 
$end 
 
$molecule 
   0 2 
   c1 
   x1 c1 1.0 
   c2 c1 rc2 x1 90.0 
   x2 c2 1.0 c1 90.0 x1 0.0 
   c3 c1 rc3 x1 90.0 c2 tc3 
   c4 c1 rc3 x1 90.0 c2 -tc3 
   c5 c3 rc5 c1 ac5 x1 -90.0 
   c6 c4 rc5 c1 ac5 x1 90.0 
   h1 c2 rh1 x2 90.0 c1 180.0 
   h2 c3 rh2 c1 ah2 x1 90.0 
   h3 c4 rh2 c1 ah2 x1 -90.0 
   h4 c5 rh4 c3 ah4 c1 180.0 
   h5 c6 rh4 c4 ah4 c1 180.0 
   rc2=2.67298593 
   rc3=1.35449831 
   tc3=62.85150452 
   rc5=1.37290399 
   ac5=116.45436983 
   rh1=1.08573521 
   rh2=1.08534214 
   ah2=122.157328 
   rh4=1.08721616 
   ah4=119.52349629 
$end 
 
$rem 
   basis             =  6-31+G* 
   exchange          =  hf 
   memory            =  5000000 
   intsbuffersize    =  15000000 
   scf_convergence   =  8 
   cis_n_roots       =  5 
   xcis              =  true 
$end 
 

Example 6.2 An XCIS calculation of excited states of an unsaturated radical, the 
phenyl radical, for which double substitutions make considerable 
contributions to low-lying excited states. 
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$comment  
singlet n -- > pi* state optimization and frequencies for 
formaldehyde  
$end  
 
$molecule  
   0 1  
   C  
   O,1,CO  
   H,1,CH,2,A  
   H,1,CH,2,A,3,D  
 
   CO = 1.2  
   CH = 1.0  
   A  = 120.0  
   D  = 150.0  
$end  
 
$rem 
   jobtype          =  opt  
   exchange         =  HF  
   basis            =  6 - 31+G*  
   cis_state_deriv  =  1            Optimize state 1  
   cis_n_roots      =  3            Do 3 states  
   cis_singlets     =  true         Do    do singlets  
   cis_triplets     =  false        Don't do Triplets  
$end  
 
@@@ 
$molecule  
   READ  
$end  
 
$rem 
   jobtype          =  freq  
   exchange         =  HF  
   basis            =  6 - 31+G*  
   cis_state_deriv  =  1            Focus on state 1  
   cis_n_roots      =  3            Do 3 states  
   cis_singlets     =  true         Do    do singlets  
   cis_triplets     =  false        Don't do Triplets  
$end  
 

Example 6.3 This example illustrates a CIS geometry optimization followed by a 
vibrational frequency analysis on the lowest singlet excited state of 
formaldehyde.  This n → π* excited state is non-planar, unlike the 
ground state.  The optimization converges to a nonplanar structure with 
zero forces, and all frequencies real. 
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6.3  TIME-DEPENDENT DENSITY FUNCTIONAL THEORY (TDDFT) 

6.3.1 A BRIEF INTRODUCTION TO TDDFT 

Excited states may be obtained from density functional theory by time-dependent density 
functional theory [13,14], which calculates poles in the response of the ground state 
density to a time-varying applied electric field.  These poles are Bohr frequencies or 
excitation energies, and are available in Q-Chem [15], together with the CIS-like Tamm-
Dancoff approximation [16].  TDDFT is becoming very popular as a method for studying 
excited states because the computational cost is roughly similar to the simple CIS method 
(scaling as roughly the square of molecular size), but a description of differential electron 
correlation effects is implicit in the method.  The excitation energies for low-lying 
valence excited states of molecules (below the ionization threshold, or more 
conservatively, below the first Rydberg threshold) are often remarkably improved 
relative to CIS, with an accuracy of roughly 0.3 eV being observed with either gradient 
corrected or local density functionals. 

However, standard density functionals do not yield a potential with the correct long-
range Coulomb tail (due to the so-called self-interaction problem), and therefore excited 
states which sample this tail (for example diffuse Rydberg states, and some charge 
transfer excited states) are not given accurately [17,18].  Hence it is advisable to only 
employ TDDFT for low-lying valence excited states that are below the first ionization 
potential of the molecule.  This makes radical cations a particularly favorable choice of 
system, as exploited in ref. [19].  TDDFT for low-lying valence excited states of radicals 
is in general a remarkable improvement relative to CIS, including some states, that, when 
treated by wave function-based methods can involve a significant fraction of double 
excitation character [15]. 

6.3.2 JOB CONTROL FOR TDDFT 

Input for time-dependent density functional theory calculations follows very closely the 
input already described for the uncorrelated excited state methods described in the 
previous section (in particular, see Section 6.2.4).  There are two points to be aware of: 

• The exchange and correlation functionals are specified exactly as for a ground state 
DFT calculation, through EXCHANGE and CORRELATION. 

• If RPA is set to true, a full TDDFT calculation will be performed.  This is not the 
default.  The default is to RPA = false, which leads to a calculation employing the 
Tamm-Dancoff approximation (TDA), which is usually a good approximation to full 
TDDFT. 

TDDFT and TDDFT/TDA are both available only for excitation energies at present. 
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6.3.3 EXAMPLES 

$comment 
methyl peroxy radical 
TDDFT/TDA and full TDDFT with 6-31+G* 
$end 
 
$molecule 
   0 2 
   C           1.004123   -0.180454    0.000000 
   O          -0.246002    0.596152    0.000000 
   O          -1.312366   -0.230256    0.000000 
   H           1.810765    0.567203    0.000000 
   H           1.036648   -0.805445   -0.904798 
   H           1.036648   -0.805445    0.904798 
$end 
 
$rem 
   exchange            B 
   correlation         LYP 
   cis_n_roots         5 
   basis               6-31+G* 
   scf_convergence     7 
$end 
 
@@@ 
$molecule 
   READ 
$end 
 
$rem 
   exchange            B 
   correlation         LYP 
   cis_n_roots         5 
   rpa                 true 
   basis               6-31+G* 
   scf_convergence     7 
$end 
 
 

Example 6.4 This example shows 2 jobs which request variants of time-dependent 
density functional theory calculations.  The first job, using the default 
value of RPA = false, performs TDDFT in the Tamm-Dancoff 
approximation (TDA).  The second job, with RPA = true performs a both 
TDA and full TDDFT calculations. 
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6.4  EXCITED STATE CORRELATED METHODS 

6.4.1 CIS(D) 

CIS(D) [20,21] is a simple size-consistent doubles correction to CIS which has a 
computational cost which scales as the fifth power of the basis set for each excited state. 
In this sense, CIS(D) and can be considered an excited state analog of the ground state 
MP2 method. CIS(D) yields useful improvements in the accuracy of excitation energies 
relative to CIS, and yet can still be applied to relatively large molecules using Q-Chem’s 
eff icient integrals transformation package. 

The CIS(D) excited state procedure is a second-order perturbative approximation to the 
computationally expensive CCSD, based on a single excitation configuration interaction 
(CIS) reference. The coupled cluster wavefunction, truncated at single and double 
excitations, is the exponential of the single and double substitution operators acting on 
the Hartree-Fock determinant 

 ( )1 2 0exp T TΨ = + Ψ  (6.16) 

Determining the singles and doubles amplitudes requires solving the two equations 

 ( )2 31 1
1 2 1 1 2 1 02 3!1 0a

i H E T T T TT TΨ − + + + + + Ψ =  (6.17) 

 ( )2 3 2 2 41 1 1 1 1
1 2 1 1 2 1 2 1 2 1 02 3! 2 2 4!1 0ab

ij H E T T T TT T T T T TΨ − + + + + + + + + Ψ =  (6.18) 

which lead to the CCSD excited state equations, which can be written 

 ( )21
1 2 1 1 1 2 1 2 1 1 02

a a
i iH E U U TU TU U T T U bωΨ − + + + + + Ψ =  (6.19) 
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This is an eigenvalue equation Ab = ωb for the transition amplitudes (b vectors), which 
are also contained in the U operators. 

The second-order approximation to the CCSD eigenvalue equation yields a second-order 
contribution to the excitation energy which can be written in the form 

 (2) (0) (1) (1) (0) (2) (0)ω = +t t
A Ab b b b  (6.21) 

or in the alternative form 
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(2) ( )

( ) 2

CIS D

CIS D MPE E

ω ω=
= −

 (6.22) 

where 

 ( )
2 2 1

CIS D CIS HF CIS HFE V U V T U= Ψ Ψ + Ψ Ψ  (6.23) 

and 

 2
2

MP HF HFE V T= Ψ Ψ  (6.24) 

The output of a CIS(D) calculation contains useful information beyond the CIS(D) 
corrected excitation energies themselves.  The stabilit y of the CIS(D) energies is tested 
by evaluating a diagnostic, termed the “theta diagnostic” [22].  The theta diagnostic 
calculates a mixing angle that measures the extent to which electron correlation causes 
each pair of calculated CIS states to couple.  Clearly the most extreme case would be a 
mixing angle of 45°, which would indicate breakdown of the validity of the initial CIS 
states and any subsequent corrections.  On the other hand small mixing angles on the 
order of only a degree or so are an indication that the calculated results are reliable.  The 
code reports the largest mixing angle for each state to all others that have been calculated. 

6.4.2 CIS(D) JOB CONTROL 

The algorithms used to evaluate the CIS(D) energy have much in common with Q-
Chem’s semidirect MP2 methods, discussed earlier in Section 5.3.  As such, there are 
again 3 nondefaulted options that the user should understand in order to run CIS(D) 
calculations. 

(1) MEMORY:  The value specified for this REM variable must be suff icient to 
permit eff icient integral evaluation (2-10MW) and to hold a large temporary array 
whose size is 2OVN, the product of the number of occupied, virtual and total 
numbers of orbitals. 

(2) CD_DISK:  The value specified for this REM variable should be as large as 
possible (i.e. perhaps 80% of the free space on your $QCSCRATCH partition 
where temporary job files are held).  The value of this variable will determine 
how many times the two-electron integrals in the atomic orbital basis must be re-
evaluated, which is a major computational step in CIS(D) calculations. 

(3) N_FROZEN_CORE:  The computational requirements for CIS(D) are 
proportional to the number of occupied orbitals for some steps, and the square of 
that number for other steps.  Therefore the CPU time can be significantly reduced 
if your job employs the frozen core approximation.  Additionally the memory and 
disk requirements are reduced when the frozen core approximation is employed. 
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CORRELATION 
 OPTION: 
  CIS(D)   CIS(D) excited states 
 
CIS_N_ROOTS 
 Sets the number of CI-Singles (CIS) excited state roots to find. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Do not look for any excited states 
 OPTIONS: 
  n > 0 Look for n CIS excited states 
 
MEMORY 
 Sets the memory for individual program modules 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  2,000,000 (2 MW) 
 OPTIONS: 

User-defined number of words.  For direct and semidirect MP2 
calculations, this must exceed OVN + requirements for AO integral 
evaluation (2-10 MW), as discussed above. 

 
MEMORY_TOTAL 
 Sets the total memory available to Q-Chem 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  Unlimited (1,000 MW) 
 OPTIONS: 
  User-defined number of words 
 RECOMMENDATION: 
  Use default, or set to the physical memory of your machine. 
 
CD_MAX_DISK 
 Sets the amount of disk space (in words) available for MP2 calculations 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  60,000,000 (60 MW) 
 OPTIONS: 
  User-defined: should be set as large as possible, discussed in Sec. 5.3.1 
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CD_ALGORITHM 
 Determines the algorithm for MP2 integral transformations 
 VARIABLE: 
  STRING 
 DEFAULT: 
  Program determined 
 OPTIONS: 
  DIRECT   Uses fully direct algorithm (energies only) 
  SEMI_DIRECT  Uses disk-based semi-direct algorithm 
 RECOMMENDATION: 
  Semidirect is usually most efficient, and will normally be chosen by 

default. 
 
N_FROZEN_CORE 
 Sets the number of frozen core orbitals in a post-Hartree-Fock calculation 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 
 OPTIONS: 
  FC Frozen Core approximation (all core orbitals frozen) 
  n Freeze n core orbitals 
 
N_FROZEN_VIRTUAL 
 Sets the number of frozen virtual orbitals in a post-Hartree-Fock calculation 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 
 OPTIONS: 
  n Freeze n virtual orbitals 
 

6.4.3 COUPLED CLUSTER EXCITED STATE METHODS 

It is possible to obtain a description of electronic excited states at a level of theory similar 
to that associated with coupled cluster theory for the ground state, by applying either 
linear response theory [23] or equations of motion methods [24].  A number of groups 
have demonstrated that excitation energies based on a coupled cluster singles and doubles 
ground state are generally very accurate for states that are primarily single electron 
promotions.  The error observed in calculated excitation energies to such states is 
approximately 0.3 eV, including both valence and Rydberg excited states.  This of course 
assumes that a basis set large and flexible enough to describe valence and Rydberg states 
is employed.  The accuracy of excited state coupled cluster methods is much lower for 
excited states that involve a substantial component of double excitation character, where 
errors may be 1 eV or even more.  Such errors arise because the description of electron 
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correlation is better in the ground state than for an excited state with substantial double 
excitation character.   

Q-Chem includes coupled cluster methods for excited states based on the optimized 
orbital coupled cluster doubles (OD) method, described earlier.  OD excitation energies 
are essentially identical in numerical performance to CCSD excited states, as has been 
recently demonstrated [25].  This method, while far more computationally expensive than 
TDDFT, is nevertheless useful as a proven high accuracy method for the study of excited 
states of small molecules.  Also, when studying a series of related molecules it can be 
very useful to compare the performance of TDDFT and coupled cluster theory for at least 
a small example to understand its performance.  Along similar lines, the CIS(D) method 
described earlier as an economical correlation energy correction to CIS excitation 
energies is in fact an approximation to coupled cluster excitation energies.  It is useful to 
assess the performance of CIS(D) for a class of problems by benchmarking against the 
full coupled cluster treatment.  Finally, Q-Chem also includes excited states by the 
equation of motion version of the valence optimized doubles (VOD) method (see Section 
5.7 of the previous chapter), whose validity and use is fully discussed in ref. [25]. 

6.4.4 COUPLED CLUSTER EXCITED STATE JOB CONTROL 

There are quite a rich range of input control options for coupled cluster excited state 
calculations.  The minimal requirement is the input for the ground state OD or VOD 
calculation (see Chapter 5), plus specification of the number of excited states requested, 
through CC_NLOWSPIN and CC_NHIGHSPIN.  The full range of input options that are 
directly relevant to coupled cluster excited states follows: 

CC_DCONVERGENCE 
Convergence criterion for the RMS residuals of excited state vectors [10**(-n)].  
VARIABLE: 

INTEGER 
DEFAULT: 

5 
OPTIONS: 
 n  10**(-n) convergence criterion 
RECOMMENDATIONS: 

Should be consistent with CC_DTHRESHOLD.  
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CC_DO_DISCONECTED 
Are disconnected terms included in the excited state coupled cluster equations? 
VARIABLE: 

LOGICAL 
DEFAULT: 

FALSE 
OPTIONS: 
 TRUE/FALSE 
RECOMMENDATIONS: 

Inclusion of disconnected terms has very small effects and is not necessary. 
 
CC_DTHRESHOLD 

Specifies threshold for including a new expansion vector in the iterative Davidson 
diagonalization. Their norm must be above this threshold.   
VARIABLE: 

DOUBLE Integer code abcde is mapped to abc * 10**(-de) 
DEFAULT: 

0.00001 
RECOMMENDATIONS: 

Should be consistent with CC_DCONVERGENCE. 
 
CC_DMAXITER 

Maximum number of iteration allowed for Davidson diagonalization procedure.  
VARIABLE: 

INTEGER 
DEFAULT: 

30 
 
CC_HOW_DO_DOUBLES 

Distinguishes different implementations of active space coupled cluster excited 
state (VOD) calculations.  
VARIABLE: 

INTEGER 
DEFAULT: 

2 
OPTIONS: 

0  Double excitations for excited states are defined in the 
whole orbital space. This model is unbalanced and should be 
used for testing purposes only. 

1  Double excitations for the excited states are restricted to an 
active (valence) orbital space.  This approximates linear 
response CASCCF, with no orbital relaxation.   

2  Approximate treatment of orbital relaxation by including all 
internal and semi-internal excited state double excitations.  
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CC_NGUESS_DOUBLES 
Specifies number of excited state guess vectors which are double excitations.  
VARIABLE: 

INTEGER 
DEFAULT: 

0 
OPTIONS: 
 n  Include n guess vectors that are double excitations 
RECOMMENDATIONS: 

This should be set to the expected number of doubly excited states (see 
also CC_PRECONV_DOUBLES), otherwise they may not be found. 

 
CC_NGUESS_SINGLES 

Specifies number of excited state guess vectors that are single excitations.  
VARIABLE: 

INTEGER 
DEFAULT: 

Equal to the number of excited states requested 
OPTIONS: 
 n  Include n guess vectors that are single excitations 
RECOMMENDATIONS: 

Should be greater or equal than the number of excited states requested. 
 
CC_NHIGHSPIN 

Sets the number of coupled cluster high-spin excited state roots to find.  Works 
only for singlet ground state and triplet excited states.  The program will increase 
this number if it suspects degeneracy, or change it to a smaller value, if it cannot 
generate enough guess vectors to start the calculations 

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0  Do not look for any coupled cluster excited states 
 OPTIONS: 
  n > 0  Find n CC excited states (after an OD ground state job) 
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CC_NLOWSPIN 
Sets the number of coupled cluster excited state roots to find with the same 
multiplicity as the ground state. For a spin-unrestricted ground state, (e.g., doublet 
radicals), this is the total number of states of all multiplicities.  The program will 
increase this number if it suspects degeneracy, or change it to a smaller value, if it 
cannot generate enough guess vectors to start the calculations.   

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0  Do not look for any coupled cluster excited states 
 OPTIONS: 
  n > 0  Find n CC excited states (after an OD ground state job) 
 
CC_NVEC_PER_ROOT 

Specifies maximum number of vectors per root in Davidson' diagonalization.  
VARIABLE: 

INTEGER 
DEFAULT: 

6 
OPTIONS: 

  n  Up to n vectors per root before the subspace is reset 
RECOMMENDATIONS: 

  Larger values increase storage but speed convergence. 
 
CC_PRECONV_DOUBLES 

When TRUE, doubly-excited vectors are converged prior to a full excited states 
calculation.  
VARIABLE: 

LOGICAL 
DEFAULT: 

FALSE 
OPTIONS: 
 TRUE/FALSE 
RECOMMENDATIONS: 

Occasionally necessary to ensure a doubly excited state is found. 
 
CC_PRECONV_SINGLES 

When TRUE, singly-excited vectors are converged prior to a full excited states 
calculation.  
VARIABLE: 

LOGICAL 
DEFAULT: 

FALSE 
OPTIONS: 
 TRUE/FALSE 
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6.4.5 EXAMPLES 

$comment 
   CIS(D) excitation energies for formaldehyde 
$end 
 
$molecule 
   0 1 
   C        .000000      .000000      .519517 
   O        .000000      .000000     -.664800 
   H        .924162      .000000     1.100647 
   H       -.924162      .000000     1.100647 
$end 
 
$rem 
   correlation      =  CIS(D) 
   exchange         =  HF 
   basis            =  6-311(2+)G* 
   cis_n_roots      =  5             5 states 
   memory           =  12500000      100 MB of memory 
   cd_disk          =  250000000     2   GB of disk 
$end 
 

Example 6.5 Evaluating the 5 lowest singlet and triplet excited states of formaldehyde 
using CIS(D), which treats excited states at a level of theory that is 
roughly similar to the MP2 method for the ground state. 
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$comment 
   OD for ground + lowest 5 excited states of formaldehyde 
$end 
 
$molecule 
   0 1 
   C        .000000      .000000      .519517 
   O        .000000      .000000     -.664800 
   H        .924162      .000000     1.100647 
   H       -.924162      .000000     1.100647 
$end 
 
$rem 
   correlation      =  OD 
   exchange         =  HF 
   basis            =  6-311(2+)G* 
   cc_nlowspin      =  5             5 states 
   memory           =  12500000      100 MB of memory 
$end 
 

Example 6.6 Evaluating the 5 lowest singlet excited states of formaldehyde using OD.  
This calculation is much more expensive than the CIS(D) example shown 
above, but also yields more accurate results. 

 

6.5  ATTACHMENT/DETACHMENT DENSITY ANALYSIS 

As methods for ab initio calculations of excited states are becoming increasingly more 
routine, the question is how best to extract chemical meaning from such calculations. 
Recently, a new method of analyzing molecular excited states has been proposed [7] 
which has proven successful in applications reported so far [7,26,27].  This section 
describes the theoretical background to this attachment-detachment density analysis, 
while details of the input for creating data suitable for plotting these quantities is 
described separately in the Molecular Properties Chapter. 

Consider the one-particle density matrices of the initial and final states of interest, P1 and 
P

2 respectively. Assuming that each state is represented in a finite basis of spin-orbitals, 
such as the molecular orbital basis, and each state is at the same geometry. Subtracting 
these matrices yields the difference density 

 1 2∆ = −P P  (6.25) 

Now, the eigenvectors of the one-particle density matrix P describing a single state are 
termed the natural orbitals, and provide the best orbital description that is possible for the 
state, in that a CI expansion using the natural orbitals as the single-particle basis is the 
most compact. The basis of the attachment/detachment analysis is to consider what could 
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be termed natural orbitals of the electronic transition and their occupation numbers 
(associated eigenvalues). These are defined as the eigenvectors U defined by 

 δ∆ =tU U  (6.26) 

The sum of the occupation numbers δp of these orbitals is then 

 
1

( )
N

p
p

tr nδ
=

∆ = =∑  (6.27) 

where n is the net gain or loss of electrons in the transition. The net gain in an electronic 
transition which does not involve ionisation or electron attachment will obviously be 
zero. 

The detachment density 

 = tD UdU  (6.28) 

is defined as the sum of all natural orbitals of the difference density with negative 
occupation numbers, weighted by the absolute value of their occupations where d is a 
diagonal matrix with elements 

 min( ,0)p pd δ= −  (6.29) 

The detachment density corresponds to the electron density associated with single 
particle levels vacated in an electronic transition or hole density. 

The attachment density 

 = tA UaU  (6.30) 

is defined as the sum of all natural orbitals of the difference density with positive 
occupation numbers where a is a diagonal matrix with elements 

 max( ,0)p pa δ=  (6.31) 

The attachment density corresponds to the electron density associated with the single 
particle levels occupied in the transition or particle density. The difference between the 
attachment and detachment densities yields the original difference density matrix 

 ∆ = −A D  (6.32) 
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CHAPTER 7  BASIS SETS 

 

7.1 INTRODUCTION 

A basis set is a set of functions combined linearly to model molecular orbitals. Basis 
functions can be considered as representing the atomic orbitals of the atoms and are 
introduced in quantum chemical calculations because the equations defining the 
molecular orbitals are otherwise very diff icult to solve directly. 

Many standard basis sets have been carefully optimized and tested over the years. In 
principle, a user would employ the largest basis set available in order to model molecular 
orbitals as accurately as possible. In practice, however, computational cost grows rapidly 
with the size of the basis set so a compromise must be sought between accuracy and cost. 
If this is systematically pursued, it leads to a “theoretical model chemistry” [1], that is, a 
well -defined energy procedure (e.g., Hartree-Fock) in combination with a well defined 
basis set. 

Basis sets have been constructed from Slater, Gaussian, plane wave and delta functions. 
Slater functions were initially employed because they are considered “natural” and have 
the correct behaviour at the origin and asymptotically. However, the two electron 
repulsion integrals (ERIs) encountered when using Slater basis functions are expensive 
and diff icult. Delta functions are used in several quantum chemistry programs. However, 
while codes incorporating delta functions are simple, thousands of functions are required 
to achieve accurate results, even for small molecules.  Plane waves are widely used and 
highly eff icient for calculations on periodic systems, but are not so convenient or natural 
for molecular calculations. 

The most important basis sets are contracted sets of atom-centered Gaussian functions 
where the numbers of basis functions used are related to the number of core and valence 
atomic orbitals, and whether the atom is light (H or He) or heavy (everything else). 
Contracted basis sets have been shown to be computationally eff icient and to have the 
abilit y to yield chemical accuracy (see the Appendix on AOINTS). The Q-Chem program 
has been optimized to exploit basis sets of the contracted Gaussian function type and has 
a large number of built -in standard basis sets (developed by Dunning and Pople, among 
others) which the user can access quickly and easily. 

The selection of a basis set for quantum chemical calculations is very important. It is 
sometimes possible to use small basis sets to obtain good chemical accuracy, but 
calculations can often be significantly improved by the addition of diffuse and 
polarization functions. Consult the literature and reviews [1,2,3,4,5] to aid your selection. 
Refer to the “Further Reading” section at the end of this chapter. 
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7.2 BUILT-IN BASIS SETS 

Q-Chem is equipped with many standard basis sets [6]. Q-Chem allows the user to 
identify the required basis set by its standard symbolic representation. The available built 
in basis sets are presented below. The four types are: 

1. Pople basis sets 
2. Old Dunning basis sets 
3. New, correlation consistent Dunning basis sets 
4. Ahlrichs basis sets 
 

7.2.1 FEATURES 

• Extra diffuse functions necessary for high quality excited state calculations 
• Pople’s standard basis sets 
• Arsenal of Dunning derived basis sets 
• Dunning’s correlation consistent basis sets 
• Ahlrichs basis sets 
• Standard polarisation functions 
• Basis sets are requested by symbolic representation 
• s, p, d, f and g angular momentum types of basis functions 
• Maximum number of shells per atom is 100 
• Pure and Cartesian basis functions 
 

7.2.2 JOB CONTROL 

BASIS 
 Sets the basis set to be used 
 VARIABLE: 
  STRING 
 DEFAULT: 
  No default basis set 
 OPTIONS: 
  General, Gen  User-defined. See section below 
  Symbol  Use standard basis sets as in the table below 
 RECOMMENDATIONS: 
  Consult lit erature and reviews to aid your selection. 
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7.3 BASIS SET SYMBOLIC REPRESENTATION 

Examples are given in the tables below and follow the standard format generally adopted 
for specifying basis sets. The single exception applies to additional diffuse functions. 
These are best inserted in a similar manner to the polarisation functions; in parentheses 
with the light atom designation following heavy atom designation. (i.e., heavy, light). 
Use a period (.) as a place holder (see examples). 

 
 STO-j(k+,l+)G(m,n) j-21(k+,l+)G(m,n) j-31(k+,l+)G(m,n) j-311(k+,l+)G(m,n) 

j 2, 3, 6 3 4, 6 6 
k # sets of heavy atom diffuse functions 
l # sets of heavy atom diffuse functions 
m d 2d 3d df 2df 3df 
n p 2p 3p pd 2pd 3pd 

Table 7.1a Summary of Pople type basis sets available in the Q-Chem program 

 
 

Symbolic name Atoms Supported 

STO-2G H, He, Li→Ne, Na→Ar, K, Ca, Sr 
STO-3G H, He, Li→Ne, Na→Ar, K→Kr, Rb→Sb 
STO-6G H, He, Li→Ne, Na→Ar, K→Kr 
3-21G H, He, Li→Ne, Na→Ar, K→Kr, Rb→Xe, Cs 
4-31G H, He, Li→Ne, P→Cl 
6-31G H, He, Li→Ne, Na→Ar, K→Kr 
6-311G H, He, Li→Ne, Na→Ar, Ga→Kr 
G3LARGE H, He, Li→Ne, Na→Ar, Ga→Kr 
G3MP2LARGE H, He, Li→Ne, Na→Ar, Ga→Kr 

Table 7.1b Atoms supported for Pople basis sets available in Q-Chem (see the Table 
below for specific examples). 
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Basis set Atoms Supported 

3-21G 
3-21+G 
3-21G* 

H, He, Li→Ne, Na→Ar, K→Kr, Rb→Xe, Cs 
H, He, Na→Cl, Na→Ar 
H, He, Na→Cl 

6-31G 
6-31+G 
6-31G* 
6-31G(d,p) 
6-31G(.,+)G 
6-31+G* 

H, He, Li→Ne, Na→Ar, K→Zn 
H, He, Li→Ne, Na→Ar 
H, He, Li→Ne, Na→Ar, K→Zn 
H, He, Li→Ne, Na→Ar, K→Zn 
H, He, Li→Ne, Na→Ar 
H, He, Li→Ne, Na→Ar 

6-311G 
6-311+G 
6-311G* 
6-311G(d,p) 

H, He, Li→Ne, Na→Ar, Ga→Kr 
H, He, Li→Ne, Na→Ar 
H, He, Li→Ne Na→Ar, Ga→Kr 
H, He, Li→Ne Na→Ar, Ga→Kr 

G3LARGE 
G3MP2LARGE 

H, He, Li→Ne, Na→Ar, Ga→Kr 
H, He, Li→Ne, Na→Ar, Ga→Kr 

Table 7.1c Examples of extended Pople basis sets 

 
 

 SV(k+,l+)(md,np) DZ(k+,l+)(md,np) TZ(k+,l+)(md,np) 

k # sets of heavy atom diffuse functions 
l # sets of heavy atom diffuse functions 
m # sets of d functions on heavy atoms 
n # sets of p functions on light atoms 

Table 7.2a Summary of Dunning-type basis sets available in the Q-Chem program 

 
 

Symbolic name Atoms Supported 

SV H, Li→Ne 
DZ H, Li→Ne, Al→Cl 
TZ H, Li→Ne 

Table 7.2b Atoms supported for old Dunning basis sets available in Q-Chem 
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Basis set Atoms Supported 

SV 
SV* 
SV(d,p) 

H, Li→Ne 
H, B→Ne 
H, B→Ne 

DZ 
DZ+ 
DZ++ 
DZ* 
DZ**  
DZ(d,p) 

H, Li→Ne, Al→Cl 
H, B→Ne 
H, B→Ne 
H, Li→Ne 
H, Li→Ne 
H, Li→Ne 

TZ 
TZ+ 
TZ++ 
TZ* 
TZ**  
TZ(d,p) 

H, Li→Ne 
H, Li→Ne 
H, Li→Ne 
H, Li→Ne 
H, Li→Ne 
H, Li→Ne 

Table 7.2c Examples of extended Dunning basis sets 

 
 

Basis Set Basis Set 

cc-pVDZ aug-cc-pVDZ 
cc-pVTZ aug-cc-pVTZ 
cc-pVQT aug-cc-pVQT 
cc-pCVDZ aug-cc-pCVDZ 
cc-pCVTZ aug-cc-pCVTZ 
cc-pCVQZ aug-cc-pCVQZ 

Table 7.3a Summary of Dunning’s correlation-consistent basis sets available in 
Q-Chem 
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Symbolic name Atoms Supported 

cc-pVDZ H, He, B→Ne, Al→Ar, Ga→Kr 
cc-pVTZ H, He, B→Ne, Al→Ar, Ga→Kr 
cc-pVQZ H, He, B→Ne, Al→Ar, Ga→Kr 
cc-pCVDZ B→Ne 
cc-pCVTZ B→Ne 
cc-pCVQZ B→Ne 
aug-cc-pVDZ H, He, B→Ne, Al→Ar, Ga→Kr 
aug-cc-pVTZ H, He, B→Ne, Al→Ar, Ga→Kr 
aug-cc-pVQZ H, He, B→Ne, Al→Ar, Ga→Kr 
aug-cc-pCVDZ B→F 
aug-cc-pCVTZ B→Ne 
aug-cc-pCVQZ B→Ne 

Table 7.3b Atoms supported Dunning correlation-consistent basis sets available in 
Q-Chem 

 

Symbolic name Atoms Supported 

TZV Li→Kr 
VDZ H→Kr 
VTZ H→Kr 

Table 7.4 Atoms supported for Ahlrichs basis sets available in Q-Chem 

7.3.1 CUSTOMIZATION 

Q-Chem offers a number of standard and special customization features. One of the most 
important is that of supplying additional diffuse functions. Diffuse functions are often 
important for the purpose of studying anions and excited states of molecules. For the 
latter, it is often important to supply several additional diffuse functions. This can be 
achieved by splitting the standard basis set diffuse function set into multiple diffuse sets, 
using a special scaling factor (3.32) applied to the standard diffuse function exponent. 
This yields a geometric series of diffuse function exponents, starting with the original 
standard exponent value. 
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PRINT_GENERAL_BASIS 
 Controls print out of built in basis sets in input format 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Do not print out standard basis set information 
 OPTIONS: 
  TRUE  Print out standard basis set information 
  FALSE Do not print out standard basis set information 
 RECOMMENDATIONS: 
  Useful for modification of standard basis sets 
 

7.4 USER-DEFINED BASIS SETS ($BASIS) 

7.4.1 INTRODUCTION 

Users may, on occasion, prefer to use non-standard basis sets and, it is possible to declare 
user-defined basis sets in Q-Chem input (see Chapter 3 on Q-Chem inputs). The format 
for inserting a non-standard user-defined basis set is both logical and flexible and is 
described in detail in the job control section below.  

Note that the SAD guess is not currently supported with non-standard user-defined basis 
sets. The simplest alternative is to specify the GWH or CORE options for SCF_GUESS, 
but these are relatively ineffective other than for small basis sets.  The recommended 
alternative is to employ basis set projection, by specifying a standard basis set for the 
BASIS2 keyword.  See the section in Chapter 4 on initial guesses for more information. 
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7.4.2 FEATURES 

• Insertion of user-defined contracted basis sets 
• Angular momentum types S, P, SP, D, F & G 
• Pure or Cartesian functions 
• Maximum number of shells per atom is 100 
 

7.4.3 JOB CONTROL 

BASIS 
 OPTION: 
  General, Gen  User-defined basis via $basis keyword 
 
PURECART 
 Controls the use of pure (spherical harmonic) or Cartesian angular forms 
 DEFAULT: 
  None. 
 OPTIONS: 
  gfd Use 1 for pure and 2 for Cartesian. 
   Must be defined for user supplied basis sets. 
 

When using a non-standard basis set which incorporates d or higher basis functions of 
angular momentum, the $rem variable PURECART needs to be initiated. This $rem 
variable indicates to the Q-Chem program how to handle the angular form of the basis 
functions. As indicated above, each integer represents an angular momentum type which 
can be defined as either pure (1) or Cartesian (2). For example, 111 would indicate to the 
Q-Chem program to treat all G, F and D basis functions as being in the pure form. 121 
would indicate G and D’s pure and F’s Cartesian, etc. 
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7.4.4 EXAMPLE 

$molecule 
0 1 
O 
H O OH 
H O OH 2 HOH 
 
OH = 1.2 
HOH = 110.0 
$end 
 
$rem 
EXCHANGE  HF  HF Exchange 
BASIS  Gen  User-defined general basis 
BASIS2  STO-3G STO-3G orbitals as initial guess 
PURECART  112  Cartesian D functions, Pure F and G 
$end 
 
$basis 
H 0 
S 1 1.00 
 1.30976  0.430129 
 0.233136  0.678914 
**** 
O 0 
S 2 1.00 
 49.9810  0.430129 
 8.89659  0.678914 
SP 2 1.00 
 1.94524  0.0494720  0.511541 
 0.493363  0.963782  0.612820 
D 1  1.00 
 0.39  1.00  
F 1  1.00 
 4.1  1.00  
G 1  1.00 
 3.35  1.00  
**** 
$end 

Example 7.1 Example of adding a user-defined non-standard basis set. Note that since 
D, F and G functions are incorporated, the $rem variable PURECART 
must be set.  Note the use of BASIS2 for the initial guess. 
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7.5 FORMAT FOR USER-DEFINED BASIS SETS 

atomic_symbol 0 
ang_mom_sym  contraction_K  scaling 
exp_1  coeff_1_Lmin  coeff_1_(Lmin+1) ... coeff_1_Lmax 
exp_2  coeff_2_Lmin  coeff_2_(Lmin+1) ... coeff_2_Lmax 
exp_3  coeff_3_Lmin  coeff_2_(Lmin+1) ... coeff_3_Lmax 
.  .   .   . . 
.  .   .   . . 
exp_K  coeff_K_Lmin  coeff_K_(Lmin+1) ... coeff_K_Lmax 
 
atomic_symbol Atomic symbol of the atom (atomic number not accepted) 
ang_mom_sym Angular momentum symbol (S, P, SP, D, F, G) 
contraction  Degree of contraction of the shell (integer) 
scaling   Scaling to be applied to exponents (default is 1.00) 
exp   Gaussian primitive exponent (positive real number) 
coeff   Contraction coeff icient for each angular momentum (non-zero real 

numbers) 
 
Atoms are terminated with **** and the complete basis set is terminated with the $end 
keyword terminator. No blank lines can be incorporated within the general basis set 
input. As with all Q-Chem input deck information, all i nput is case-insensitive. 

7.5.1 CUSTOMIZATION 

In addition to defining one’s own basis set, it is possible to define separate standard basis 
sets for individual atoms or a combination of standard and non-standard basis sets, 
exclusively, for individual atoms. These can be entered by the more familiar symbolic 
representation. 

Notes: (1) It is not possible to augment a standard basis set in this way; the whole basis 
needs to be inserted manually (angular momentum, exponents, contraction 
coeff icients) and additional functions added. Standard basis set exponents and 
coeff icients can be easily obtained by appropriately setting the 
PRINT_GENERAL_BASIS $rem variable to TRUE. 

 (2) The PURECART flag must be set for all general basis input containing D 
angular momentum or higher functions, regardless of whether standard basis sets 
are entered in this non-standard manner. 
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7.5.2 EXAMPLES 

$molecule 
0 1 
O 
H O OH 
H O OH 2 HOH 
 
OH = 1.2 
HOH = 110.0 
$end 
 
$rem 
EXCHANGE  HF  HF Exchange 
BASIS  Gen  User-defined general basis 
SCF_GUESS  GWH  SAD unavailable for general basis 
$end 
 
$basis 
H 0 
S 2 1.00 
 1.30976  0.430129 
 0.233136  0.678914 
**** 
O 0 
S 2 1.00 
 49.9810  0.430129 
 8.89659  0.678914 
SP 2 1.00 
 1.94524  0.0494720  0.511541 
 0.493363  0.963782  0.612820 
**** 
$end 

Example 7.2 Example of adding a user-defined non-standard basis set. 
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$molecule 
0 1 
O 
H O OH 
H O OH 2 HOH 
 
OH = 1.2 
HOH = 110.0 
$end 
 
$rem 
EXCHANGE  HF  HF Exchange 
CORRELATION None  No correlation energy 
BASIS  General User-defined general basis 
SCF_GUESS  GWH  SAD unavailable for general basis 
PURECART  1  Pure D functions 
$end 
 
$basis 
H 0 
S 2 1.00 
 1.30976  0.430129 
 0.233136  0.678914 
**** 
O 0 
S 2 1.00 
 49.9810  0.430129 
 8.89659  0.678914 
SP 2 1.00 
 1.94524  0.0494720  0.511541 
 0.493363  0.963782  0.612820 
D 1 1.00 
 0.39   1.00000 
**** 
$end 

Example 7.3 Example of adding a user-defined non-standard basis set. Note that since 
D functions are incorporated the $rem variable PURECART has been 
initiated. 
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$molecule 
0 1 
O 
H O OH 
H O OH 2 HOH 
 
OH = 1.2 
HOH = 110.0 
$end 
 
$rem 
EXCHANGE  HF  HF Exchange 
BASIS  General User-defined general basis 
SCF_GUESS  GWH  SAD unavailable for general basis 
$end 
 
$basis 
H 0 
STO-2G 
**** 
O 0 
STO-6G 
**** 
$end 

Example 7.4 Example of adding a user-defined non-standard basis set where the user 
defines different standard basis sets for each atom. 
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$molecule 
0 1 
O 
H O OH 
H O OH 2 HOH 
 
OH = 1.2 
HOH = 110.0 
$end 
 
$rem 
EXCHANGE  HF  HF Exchange 
BASIS  General User Defined general basis 
PURECART  2  Cartesian D functions 
BASIS2  STO-3G Use STO-3G as initial guess 
$end 
 
$basis 
H 0 
6-31G 
**** 
O 0 
6-311G(d) 
**** 
$end 

Example 7.5 Example of adding a user defined non-standard basis set. The user is able 
to specify different standard basis sets for different atoms. 
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$molecule 
0 1 
O 
H O OH 
H O OH 2 HOH 
 
OH = 1.2 
HOH = 110.0 
$end 
 
$rem 
EXCHANGE  HF  HF Exchange 
BASIS  General User-defined general basis 
BASIS2  STO-3G Use STO-3G as initial guess 
$end 
 
$basis 
H 0 
S 2 1.00 
 1.30976  0.430129 
 0.233136  0.678914 
**** 
O 0 
STO-6G 
**** 
$end 

Example 7.6 Example of adding a user-defined non-standard basis set. The user is able 
to specify standard basis sets for some atoms and supply user-defined 
exponents and contraction coefficients for others. This might be 
particularly useful in cases where the user has constructed exponents and 
contraction coefficients for atoms not defined in standard basis sets so 
that only the non-defined atoms need have the exponents and contraction 
coefficients entered. 
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Equation Section 8 

CHAPTER 8 EFFECTIVE CORE POTENTIALS 

 

8.1 INTRODUCTION 

The application of quantum chemical methods to elements in the lower half of the 
Periodic Table is more diff icult than for the lighter atoms.  There are two key reasons for 
this: 

• the number of electrons in heavy atoms is large 

• relativistic effects in heavy atoms are often non-negligible 

Both of these problems stem from the presence of large numbers of core electrons and, 
given that such electrons do not play a significant direct role in chemical behavior, it is 
natural to ask whether it is possible to model their effects in some simpler way.  Such 
enquiries led to the invention of Effective Core Potentials (ECPs) or pseudopotentials.  
For reviews of relativistic effects in chemistry, see for example refs [1,2,3,4]. 

If we seek to replace the core electrons around a given nucleus by a pseudopotential, 
while affecting the chemistry as littl e as possible, the pseudopotential should have the 
same effect on nearby valence electrons as the core electrons.  The most obvious effect is 
the simple electrostatic repulsion between the core and valence regions but the 
requirement that valence orbitals must be orthogonal to core orbitals introduces 
additional subtler effects that cannot be neglected. 

The most widely used ECPs today are of the form first proposed by Kahn et al [5] in the 
1970s.  These model the effects of the core by a one-electron operator U(r) whose matrix 
elements are simply added to the one-electron Hamiltonian matrix.  The ECP operator is 
given by 

 [ ]
1

0

( )  ( )     ( ) ( )  
L l

L lm l L lm
l m l

U r U r Y U r U r Y
− +

= =−
= + −∑ ∑  (8.1) 

where the lmY  are spherical harmonic projectors and the ( )lU r  are linear combinations 

of Gaussians, multiplied by 2r− , 1r−  or 0r .  In addition, ( )LU r  contains a Coulombic 

term c /N r , where cN  is the number of core electrons. 

One of the key issues in the development of pseudopotentials is the definition of the 
“core”.  So-called “ large-core” ECPs include all shells except the outermost one, but 
“small -core” ECPs include all except the outermost two shells.  Although the small -core 
ECPs are more expensive to use (because more electrons are treated explicitl y), it is often 
found that their enhanced accuracy justifies their use. 
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When an ECP is constructed, it is usually based either on non-relativistic, or quasi-
relativistic all-electron calculations.  As one might expect, the quasi-relativistic ECPs 
tend to yield better results than their non-relativistic brethren, especially for atoms 
beyond the 3d block. 

8.2 BUILT -IN PSEUDOPOTENTIALS 

8.2.1 OVERVIEW 

Q-Chem is equipped with several standard ECP sets which are specified using the ECP 
keyword within the $rem block.  The built-in ECPs, which are described in some detail 
at the end of this Chapter, fall into four families: 

• The Hay-Wadt (or Los Alamos) sets   (HWMB and LANL2DZ) 

• The Stevens-Basch-Krauss-Jansien-Cundari set  (SBKJC) 

• The Christiansen-Ross-Ermler-Nash-Bursten sets (CRENBS and CRENBL) 

• The Stuttgart-Bonn sets     (SRLC and SRSC) 

References and information about the definition and characteristics of most of these sets 
can be found at the EMSL site of the Pacific Northwest National Laboratory [6] 

http://www.emsl.pnl.gov:2080/forms/basisform.html 

Each of the built-in ECPs comes with a matching orbital basis set for the valence 
electrons.  In general, it is advisable to use these together and, if you select a basis set 
other than the matching one, Q-Chem will print a warning message in the output file.  If 
you omit the BASIS keyword entirely, Q-Chem will automatically provide the matching 
one. 

8.2.2 JOB CONTROL FOR BUILT-IN ECP’S 

ECP 
 Defines the effective core potential and associated basis set to be used 
 VARIABLE: 
  STRING 
 DEFAULT: 
  No pseudopotential 
 OPTIONS: 
  General, Gen  User defined. ($ecp keyword required) 
  Symbol  Use standard pseudopotentials discussed above. 
 RECOMMENDATIONS: 

Pseudopotentials are recommended for first row transition metals and 
heavier elements.  Consult Ch. 8 and reviews for more details. 
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8.2.3 COMBINING PSEUDOPOTENTIALS 

If you wish, you can use different ECP sets for different elements in the system.  This is 
especially useful i f you would like to use a particular ECP but find that it is not available 
for all of the elements in your molecule.  To combine different ECP sets, you set the ECP 
and BASIS keywords to “Gen” or “General” and then add a $ecp block and a $basis 
block to your input file.  In each of these blocks, you must name the ECP and the orbital 
basis set that you wish to use, separating each element by a sequence of four asterisks. 

 

8.2.4 EXAMPLES 

$molecule 
   0 1 
   Ag 
   Cl Ag r 
 
   r = 2.4 
$end 
 
$rem 
   EXCHANGE   hf         Hartree-Fock calculation 
   ECP        lanl2dz    Using the Hay-Wadt ECP 
   BASIS      lanl2dz    And the matching basis set 
$end 

 

Example 8.1 Computing the HF/LANL2DZ energy of AgCl at a bond length of 2.4 Å. 
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$molecule 
   0 1 
   Cd 
   Br1 Cd r 
   Br2 Cd r Br1 180. 
 
   r = 2.4 
$end 
$rem 
   JOBTYP         opt       Geometry optimization 
   EXCHANGE       hf        Hartree-Fock theory 
   ECP            gen       Combine ECPs 
   BASIS          gen       Combine basis sets 
   PURECART       1         Use pure d functions 
$end 
$ecp 
   Cd 
      srsc 
      **** 
   Br 
      srlc 
      **** 
$end 
$basis 
   Cd 
      srsc 
      **** 
   Br 
      srlc 
      **** 
$end 

 

Example 8.2 Computing the HF geometry of CdBr2 using the Stuttgart relativistic 
ECPs.  The small -core ECP and basis are employed on the Cd atom and 
the large-core ECP and basis on the Br atoms. 

 

8.3 USER-DEFINED PSEUDOPOTENTIALS 

Many users will find that the library of built-in pseudopotentials is adequate for their 
needs.  However, if you need to use an ECP that is not buil t into Q-Chem, you can enter 
it in much the same way as you can enter a user-defined orbital basis set (see Chapter 7). 

8.3.1 JOB CONTROL FOR USER-DEFINED ECP’S 

To apply a user-defined pseudopotential, you must set the ECP and BASIS keywords in 
$rem to “Gen”.  You then add a $ecp block that defines your ECP, element by element, 
and a $basis block that defines your orbital basis set, separating elements by asterisks. 

The syntax within the $basis block is described in Chapter 7. 

The syntax for each record within the $ecp block is as follows: 
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$ecp 

For each atom that wil l bear an ECP 

 Chemical symbol for the atom 

 ECP name ; the L value for the ECP ; number of core electrons removed 

 For each ECP component (in the order unprojected, 0̂P , 1̂P , ... , 1L̂P − ) 

  The component name 

  The number of Gaussians in the component 

  For each Gaussian in the component 

   The power of r ; the exponent ; the contraction coeff icient 

 A sequence of four asterisks (i.e. **** ) 

$end 

 

Figure 8.1 The format for the input of user-defined pseudopotentials.   

 

 

Notes about the implementation in Q-Chem 2.0 

• All of the information in the $ecp block is case-insensitive 

• The L value may not exceed 4.  That is, nothing beyond G projectors is allowed 

• The power of r (which includes the Jacobian 2r  factor) must be 0, 1 or 2. 
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8.3.2 EXAMPLE 

$molecule 
   0 1 
   al 
   h1 al r 
   h2 al r h1 120. 
   h3 al r h1 120. h2 180. 
 
   r = 1.6 
$end 
$rem 
   JOBTYPE    opt    Geometry optimization 
   EXCHANGE   hf     Hartree-Fock theory 
   ECP        gen    User-defined ECP 
   BASIS      gen    User-defined basis 
$end 
$ecp 
   Al 
      Stevens_ECP   2   10 
      d potential 
         1 
         1       1.95559     -3.03055 
      s-d potential 
         2 
         0       7.78858      6.04650 
         2       1.99025     18.87509 
      p-d potential 
         2 
         0       2.83146      3.29465 
         2       1.38479      6.87029 
      **** 
$end 
$basis 
   Al 
      SP  3  1.00 
         0.9011     -0.30377    -0.07929 
         0.4495      0.13382     0.16540 
         0.1405      0.76037     0.53015 
      SP  1  1.00 
         0.04874     0.32232     0.47724 
      **** 
   H 
      3-21G 
      **** 
$end 

 

Example 8.3 Optimizing the HF geometry of AlH3 using a user-defined ECP and basis 
set on Al and the 3-21G basis on H 
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8.4 PSEUDOPOTENTIALS AND DENSITY FUNCTIONAL THEORY 

Q-Chem’s pseudopotential package and DFT package are tightly integrated and facilit ate 
the application of advanced density functionals to molecules containing heavy elements.  
Any of the local, gradient-corrected and hybrid functionals discussed in Chapter 4 may be 
used and you may also perform ECP calculations with user-defined hybrid functionals. 

In a DFT calculation with pseudopotentials, the exchange-correlation energy is obtained 
entirely from the non-core electrons.  This wil l be satisfactory if there are no chemically 
important core-valence effects but may introduce significant errors, particularly if you are 
using a “ large-core” ECP. 

Q-Chem’s default quadrature grid is SG-1 (see Chapter 4) which was originally defined 
only for the elements up to argon.  In Q-Chem 2.0, however, the SG-1 grid has been 
extended and it is now defined for all atoms up to, and including, the actinides. 

 

8.4.1 EXAMPLE 

$molecule 
   1 1 
   xe 
   f1 xe r1 
   f2 xe r2 f1 a 
   f3 xe r2 f1 a f2 90. 
   f4 xe r2 f1 a f3 90. 
   f5 xe r2 f1 a f4 90. 
 
   r1 = 2.07 
   r2 = 2.05 
   a  = 80.0 
$end 
$rem 
   JOBTYP    opt 
   EXCHANGE  b3lyp 
   ECP       sbkjc 
$end 

 

Example 8.4 Optimization of the structure of XeF5

+
 using B3LYP theory and the ECPs 

of Stevens and collaborators.  Note that the BASIS keyword has been 
omitted and, therefore, the matching SBKJC orbital basis set will be used. 
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8.5 PSEUDOPOTENTIALS AND ELECTRON CORRELATION 

The pseudopotential package is integrated with the electron correlation package and it is 
therefore possible to apply any of Q-Chem’s post-Hartree-Fock methods to systems in 
which some of the atoms may bear pseudopotentials.  Of course, the correlation energy 
contribution arising from core electrons that have been replaced by an ECP is not 
included.  In this sense, correlation energies with ECPs are comparable to correlation 
energies from frozen core calculations.  However, the use of ECPs effectively removes 
both core electrons and the corresponding virtual (unoccupied) orbitals. 

 

8.5.1 EXAMPLE 

$molecule 
   0 1 
   x1 
   x2  x1 xx 
   se1 x1 sx x2 90. 
   se2 x1 sx x2 90. se1 90. 
   se3 x1 sx x2 90. se2 90. 
   se4 x1 sx x2 90. se3 90. 
   se5 x2 sx x1 90. se1 45. 
   se6 x2 sx x1 90. se5 90. 
   se7 x2 sx x1 90. se6 90. 
   se8 x2 sx x1 90. se7 90. 
 
   xx = 1.2 
   sx = 2.8 
$end 
$rem 
   JOBTYP    opt        Geometry optimization 
   EXCHANGE  hf         Hartree-Fock theory 
   ECP       lanl2dz    Hay-Wadt ECP and basis 
$end 
 
@@@ 
 
$molecule 
   read 
$end 
$rem 
   JOBTYP        sp         Single-point energy 
   CORRELATION   mp2        MP2 correlation energy 
   ECP           lanl2dz    Hay-Wadt ECP and basis 
   SCF_GUESS     read       Read in the MOs 
$end 

 

Example 8.5 Optimization of the structure of Se8 using HF/LANL2DZ, followed by a 
single-point energy calculation at the MP2/LANL2DZ level 
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8.6 PSEUDOPOTENTIALS AND VIBRATIONAL FREQUENCIES 

The pseudopotential package is also integrated with the vibrational analysis package and 
it is therefore possible to compute the vibrational frequencies (and hence the infra-red 
and Raman spectra) of systems in which some of the atoms may bear pseudopotentials. 

Q-Chem 2.0 cannot compute second derivatives of the required ECP integrals 
analytically and it therefore estimates the required second-derivatives by taking finite-
differences of analytically computed first derivatives.  This can be time-consuming in 
large systems. 

 

8.6.1 EXAMPLE 

$molecule 
   0 1 
   Te 
   O1 Te r 
   O2 Te r O1 a 
 
   r = 1.8 
   a = 108. 
$end 
$rem 
   JOBTYP     opt 
   EXCHANGE   hf 
   ECP        srlc 
$end 
 
@@@ 
 
$molecule 
   read 
$end 
$rem 
   JOBTYP     freq 
   EXCHANGE   hf 
   ECP        srlc 
   SCF_GUESS  read 
$end 

 

Example 8.6 Structure and vibrational frequencies of TeO2 using Hartree-Fock theory 
and the Stuttgart relativistic large-core ECPs.  Note that the vibrational 
frequency job reads both the optimized structure and the molecular 
orbitals from the geometry optimization job that precedes it. 
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8.7 A BRIEF GUIDE TO Q-CHEM ’S BUILT-IN ECP’S 

The remainder of this Chapter consists of a brief reference guide to Q-Chem’s built -in 
ECPs.  The ECPs vary in their complexity and their accuracy and the purpose of the 
guide is to enable the user quickly and easily to decide which ECP to use in a planned 
calculation. 

The following information is provided for each ECP: 

• The elements for which the ECP is available in Q-Chem.  This is shown on a 
schematic Periodic Table by shading all the elements that are not supported. 

• The literature reference for each element for which the ECP is available in Q-Chem. 

• The matching orbital basis set that Q-Chem will use for light (i.e. non-ECP atoms). 
For example, if the user requests SRSC pseudopotentials – which are defined only for 
atoms beyond argon – Q-Chem wil l use the 6–311G* basis set for all atoms up to Ar. 

• The core electrons that are replaced by the ECP.  For example, in the LANL2DZ 
pseudopotential for the Fe atom, the core is [Ne], indicating that the 1s, 2s and 2p 
electrons are removed. 

• The maximum spherical harmonic projection operator (see Section 7.1) that is used 
for each element.  This often, but not always, corresponds to the maximum orbital 
angular momentum of the core electrons that have been replaced by the ECP.  For 
example, in the LANL2DZ pseudopotential for the Fe atom, the maximum projector 
is of P-type. 

• The number of valence basis functions of each angular momentum type that are 
present in the matching orbital basis set.  For example, in the matching basis for the 
LANL2DZ pseudopotential for the Fe atom, there the three s shells, three p shells and 
two d shells.  This basis is therefore almost of triple-split valence quality. 

Finally, we note the limitations of the current ECP implementation within Q-Chem: 

• Energies can be calculated only for s, p, d and f basis functions with G projectors.  
Consequently, Q-Chem cannot perform energy calculations on actinides using SRLC. 

• Gradients can be calculated only for s, p and d basis functions with F projectors and 
only for s and p basis functions with G projectors. 
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8.7.1 THE HWMB PSEUDOPOTENTIAL AT A GLANCE 

 

 

                  
a           a 
b           

 
d 

 
b  

c 
     

                  
                  
                  

 

HWMB is not available for shaded elements 

(a) No pseudopotential;  Pople STO–3G basis used 
(b) Wadt & Hay, J. Chem. Phys. 82 (1985) 285 
(c) Hay & Wadt, J. Chem. Phys. 82 (1985) 299 
(d) Hay & Wadt, J. Chem. Phys. 82 (1985) 270 

 
 
 

Element Core Max Projector Valence 
H – He none none (1s) 
Li – Ne none none (2s,1p) 
Na – Ar [Ne] P (1s,1p) 
K – Ca [Ne] P (2s,1p) 
Sc – Cu [Ne] P (2s,1p,1d) 
Zn [Ar] D (1s,1p,1d) 
Ga – Kr [Ar]+3d D (1s,1p) 
Rb – Sr [Ar]+3d D (2s,1p) 
Y – Ag [Ar]+3d D (2s,1p,1d) 
Cd [Kr] D (1s,1p,1d) 
In – Xe [Kr]+4d D (1s,1p) 
Cs – Ba [Kr]+4d D (2s,1p) 
La [Kr]+4d D (2s,1p,1d) 
Hf – Au [Kr]+4d+4f F (2s,1p,1d) 
Hg [Xe]+4f F (1s,1p,1d) 
Tl – Bi [Xe]+4f+5d F (1s,1p) 
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8.7.2 THE LANL2DZ PSEUDOPOTENTIAL AT A GLANCE 

 

 

                  
a           a 
b           

 
d 

 
b  

c 
     

                  
                  
      e f          

 

LANL2DZ is not available for shaded elements 

(a) No pseudopotential;  Pople 6–31G basis used 
(b) Wadt & Hay, J. Chem. Phys. 82 (1985) 285 
(c) Hay & Wadt, J. Chem. Phys. 82 (1985) 299 
(d) Hay & Wadt, J. Chem. Phys. 82 (1985) 270 
(e) Hay, J. Chem. Phys. 79 (1983) 5469 
(f) Wadt, to be published 

 
 
 

Element Core Max Projector Valence 
H – He none none (2s) 
Li – Ne none none (3s,2p) 
Na – Ar [Ne] P (2s,2p) 
K – Ca [Ne] P (3s,3p) 
Sc – Cu [Ne] P (3s,3p,2d) 
Zn [Ar] D (2s,2p,2d) 
Ga – Kr [Ar]+3d D (2s,2p) 
Rb – Sr [Ar]+3d D (3s,3p) 
Y – Ag [Ar]+3d D (3s,3p,2d) 
Cd [Kr] D (2s,2p,2d) 
In – Xe [Kr]+4d D (2s,2p) 
Cs – Ba [Kr]+4d D (3s,3p) 
La [Kr]+4d D (3s,3p,2d) 
Hf – Au [Kr]+4d+4f F (3s,3p,2d) 
Hg [Xe]+4f F (2s,2p,2d) 
Tl [Xe]+4f+5d F (2s,2p,2d) 
Pb – Bi [Xe]+4f+5d F (2s,2p) 
U – Pu [Xe]+4f+5d F (3s,3p,2d,2f) 
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8.7.3 THE SBKJC PSEUDOPOTENTIAL AT A GLANCE 

 

 

a                 a 
          

b           b 

 
c 

                  
    d 
                  

 

SBKJC is not available for shaded elements 

(a) No pseudopotential;  Pople 3–21G basis used 
(b) W.J. Stevens, H. Basch & M. Krauss, J. Chem. Phys. 81 (1984) 6026 
(c) W.J. Stevens, M. Krauss, H. Basch & P.G. Jasien, Can. J. Chem 70 (1992) 

612 
(d) T.R. Cundari & W.J. Stevens, J. Chem. Phys. 98 (1993) 5555 

 
 
 

Element Core Max Projector Valence 
H – He none none (2s) 
Li – Ne [He] S (2s,2p) 
Na – Ar [Ne] P (2s,2p) 
K – Ca [Ar] P (2s,2p) 
Sc – Ga [Ne] P (4s,4p,3d) 
Ge – Kr [Ar]+3d D (2s,2p) 
Rb – Sr [Kr] D (2s,2p) 
Y – In [Ar]+3d D (4s,4p,3d) 
Sn – Xe [Kr]+4d D (2s,2p) 
Cs – Ba [Xe] D (2s,2p) 
La [Kr]+4d F (4s,4p,3d) 
Ce – Lu [Kr]+4d D (4s,4p,1d,1f) 
Hf – Tl [Kr]+4d+4f F (4s,4p,3d) 
Pb – Rn [Xe]+4f+5d F (2s,2p) 
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8.7.4 THE CRENBS PSEUDOPOTENTIAL AT A GLANCE 

 

 

                  
          
          

a a 

b 
  c 
  d 

                  
                  
                  

 

CRENBS is not available for shaded elements 

(a) No pseudopotential;  Pople STO–3G basis used 
(b) Hurley, Pacios, Christiansen, Ross & Ermler, J. Chem. Phys. 84 (1986) 6840 
(c) LaJohn, Christiansen, Ross, Atashroo & Ermler, J. Chem. Phys. 87 (1987) 2812 
(d) Ross, Powers, Atashroo, Ermler, LaJohn & Christiansen, J. Chem. Phys. 93 (1990) 

6654 
 
 
 

Element Core Max Projector Valence 
H – He none none (1s) 
Li – Ne none none (2s,1p) 
Na – Ar none none (3s,2p) 
K – Ca none none (4s,3p) 
Sc – Zn [Ar] P (1s,0p,1d) 
Ga – Kr [Ar]+3d D (1s,1p) 
Y – Cd [Kr] D (1s,1p,1d) 
In – Xe [Kr]+4d D (1s,1p) 
La [Xe] D (1s,1p,1d) 
Hf – Hg [Xe]+4f F (1s,1p,1d) 
Tl – Rn [Xe]+4f+5d F (1s,1p) 
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8.7.5 THE CRENBL PSEUDOPOTENTIAL AT A GLANCE 

 

 

a                 a 
          

b           b 

c 
d 
e 

f                
    g 
    f h 

 

CRENBL is not available for shaded elements 

(a) No pseudopotential;  Pople 6–311G* basis used 
(b) Pacios & Christiansen, J. Chem. Phys. 82 (1985) 2664 
(c) Hurley, Pacios, Christiansen, Ross & Ermler, J. Chem. Phys. 84 (1986) 6840 
(d) LaJohn, Christiansen, Ross, Atashroo & Ermler, J. Chem. Phys. 87 (1987) 2812 
(e) Ross, Powers, Atashroo, Ermler, LaJohn & Christiansen, J. Chem. Phys. 93 (1990) 

6654 
(f) Ermler, Ross & Christiansen, Int. J. Quantum Chem. 40 (1991) 829 
(g) Ross, Gayen & Ermler, J. Chem. Phys. 100 (1994) 8145 
(h) Nash, Bursten & Ermler, J. Chem. Phys. 106 (1997) 5133 

 
 

Element Core Max Projector Valence 
H – He none none (3s) 
Li – Ne [He] S (4s,4p) 
Na – Mg [He] S (6s,4p) 
Al – Ar [Ne] P (4s,4p) 
K – Ca [Ne] P (5s,4p) 
Sc – Zn [Ne] P (7s,6p,6d) 
Ga – Kr [Ar] P (3s,3p,4d) 
Rb – Sr [Ar]+3d D (5s,5p) 
Y – Cd [Ar]+3d D (5s,5p,4d) 
In – Xe [Kr] D (3s,3p,4d) 
Cs – La [Kr} +4d D (5s,5p,4d) 
Ce – Lu [Xe] D (6s,6p,6d,6f) 
Hf – Hg [Kr]+4d+4f F (5s,5p,4d) 
Tl – Rn [Xe]+4f F (3s,3p,4d) 
Fr – Ra [Xe]+4f+5d F (5s,5p,4d) 
Ac – Pu [Xe]+4f+5d F (5s,5p,4d,4f) 
Am – Lr [Xe]+4f+5d F (0s,2p,6d,5f) 
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8.7.6 THE SRLC PSEUDOPOTENTIAL AT A GLANCE 
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SRLC is not available for shaded elements 

 
(a) No pseudopotential;  Pople 6–31G basis used 
(b) Fuentealba, Preuss, Stoll & Szentpaly, Chem. Phys. Lett. 89 (1982) 418 
(c) Fuentealba, Szentpály, Preuss & Stoll, J. Phys. B 18 (1985) 1287 
(d) Bergner, Dolg, Küchle, Stoll & Preuss, Mol. Phys. 80 (1993) 1431 
(e) Nicklass, Dolg, Stoll & Preuss, J. Chem. Phys. 102 (1995) 8942 
(f) Schautz, Flad & Dolg, Theor. Chem. Acc. 99 (1998) 231 
(g) Fuentealba, Stoll, Szentpaly, Schwerdtfeger & Preuss, J. Phys. B 16 (1983) 
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(h) Szentpaly, Fuentealba, Preuss & Stoll, Chem. Phys. Lett. 93 (1982) 555 
(i) Küchle, Dolg, Stoll & Preuss, Mol. Phys. 74 (1991) 1245 
(j) Küchle, to be published 
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Element Core Max Projector Valence 
H – He none none (2s) 
Li – Be [He] P (2s,2p) 
B – N [He] D (2s,2p) 
O – F [He] D (2s,3p) 
Ne [He] D (4s,4p,3d,1f) 
Na – P [Ne] D (2s,2p) 
S – Cl [Ne] D (2s,3p) 
Ar [Ne] F (4s,4p,3d,1f) 
K – Ca [Ar] D (2s,2p) 
Zn [Ar]+3d D (3s,2p) 
Ga – As [Ar]+3d F (2s,2p) 
Se – Br [Ar]+3d F (2s,3p) 
Kr [Ar]+3d G (4s,4p,3d,1f) 
Rb – Sr [Kr] D (2s,2p) 
In – Sb [Kr]+4d F (2s,2p) 
Te – I [Kr]+4d F (2s,3p) 
Xe [Kr]+4d G (4s,4p,3d,1f) 
Cs – Ba [Xe] D (2s,2p) 
Hg – Bi [Xe]+4f+5d G (2s,2p,1d) 
Po – At [Xe]+4f+5d G (2s,3p,1d) 
Rn [Xe]+4f+5d G (2s,2p,1d) 
Ac – Lr [Xe]+4f+5d G (5s,5p,4d,3f,2g) 
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8.7.7 THE SRSC PSEUDOPOTENTIAL AT A GLANCE 
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SRSC is not available for shaded elements 

(a) No pseudopotential;  Pople 6–311G* basis used 
(b) Leininger, Nicklass, Küchle, Stoll , Dolg & Bergner, Chem. Phys. Lett. 255 (1996) 
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(c) Kaupp, Schleyer, Stoll & Preuss, J. Chem. Phys. 94 (1991) 1360 
(d) Dolg, Wedig, Stoll & Preuss, J. Chem. Phys. 86 (1987) 866 
(e) Andrae, Haeussermann, Dolg, Stoll & Preuss, Theor. Chim. Acta 77 (1990) 123 
(f) Dolg, Stoll & Preuss, J. Chem. Phys. 90 (1989) 1730 
(g) Küchle, Dolg, Stoll & Preuss, J. Chem. Phys. 100 (1994) 7535 

 
 
 

Element Core Max Projector Valence 
H – Ar none none (3s) 
Li – Ne none none (4s,3p,1d) 
Na – Ar none none (6s,5p,1d) 
K [Ne] F (5s,4p) 
Ca [Ne] F (4s,4p,2d) 
Sc – Zn [Ne] D (6s,5p,3d) 
Rb [Ar]+3d F (5s,4p) 
Sr [Ar]+3d F (4s,4p,2d) 
Y – Cd [Ar]+3d F (6s,5p,3d) 
Cs [Kr]+4d F (5s,4p) 
Ba [Kr]+4d F (3s,3p,2d,1f) 
Ce – Yb [Ar]+3d G (5s,5p,4d,3f) 
Hf – Pt [Kr]+4d+4f G (6s,5p,3d) 
Au [Kr]+4d+4f F (7s,3p,4d) 
Hg [Kr]+4d+4f G (6s,6p,4d) 
Ac – Lr [Kr]+4d+4f G (8s,7p,6d,4f) 
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8.8 FURTHER READING 

Ground State Methods (Chapters 4 and 5) 
Basis Sets (Chapter 7)  
 
[1]  P. A. Christiansen, W. C. Ermler and K. S. Pitzer, Ann. Rev. Phys. Chem. (1985) 

36, 407 
[2]  P. Pyykko, Chem. Rev. (1988) 88, 563. 
[3]  M. S. Gordon, and T. R. Cundari, Coord. Chem. Rev. (1996) 147, 87 
[4]  See articles by G. Frenking et al, T. R. Cundari et al, and J. Almlof and O. 

Gropen, in Reviews in Computional Chemistry, volume 8, edited by K. B. 
Lipkowitz and D. B. Boyd (Wiley-VCH, 1996). 

[5]  L. R. Kahn and W. A. Goddard III, J. Chem. Phys. (1972) 56, 2685. 
[6]   Basis sets were obtained from the Extensible Computational Chemistry 

Environment Basis Set Database, Version , as developed and distributed by the 
Molecular Science Computing Facility, Environmental and Molecular Sciences 
Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, 
Richland, Washington 99352, USA, and funded by the U.S. Department of 
Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated 
by Battelle Memorial Institue for the U.S. Department of Energy under contract 
DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further 
information. 
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CHAPTER 9 MOLECULAR GEOMETRY CRITICAL POINTS 

 

9.1 EQUILIBRIUM GEOMETRIES AND TRANSITION STRUCTURES 

Molecular potential energy surfaces rely on the Born-Oppenheimer separation of nuclear 
and electronic motion. Minima on such energy surfaces correspond to the classical 
picture of equili brium geometries and first-order saddle points to transition structures. 
Both equili brium and transition structures are stationary points. Gradients of equili brium 
and transition structures should vanish; characterisation of the criti cal point requires 
consideration of the eigenvalues of the Hessian (second derivative matrix). Equili brium 
geometries have Hessians whose eigenvalues are all positive. Transition structures, on the 
other hand, have Hessians with exactly one negative eigenvalue. That is, a transition 
structure is a maximum along a reaction path between two local minima, but a minimum 
in all directions perpendicular to the path. 

The quality of a geometry optimization algorithm is of major importance; even the fastest 
integral code in the world will be useless if combined with an ineff icient optimization 
algorithm that requires excessive numbers of steps to converge. Thus, Q-Chem 
incorporates the most advanced geometry optimisation features currently available 
through Jon Baker’s OPTIMIZE package (see Appendix), a product of over ten years of 
research and development. 

The key to optimizing a molecular geometry successfully is to proceed from the starting 
geometry to the final geometry in as few steps as possible. Four factors influence the path 
and number of steps: 

• starting geometry 
• optimization algorithm 
• quality of the Hessian (and gradient) 
• coordinate system 
 

Q-Chem controls the last three of these, but the starting geometry is solely determined by 
the user, and the closer it is to the converged geometry, the fewer optimization steps will 
be required. Decisions regarding the optimizing algorithm and the coordinate system are 
generally made by the OPTIMIZE package to maximise the rate of convergence. Users 
are able to override these decisions, but in general, this is not recommended. 

Another consideration in minimising optimization time concerns gradient and Hessian 
quality. A higher quality Hessian (i.e., analytical vs. approximate) will i n many cases 
lead to faster convergence and hence, fewer optimization steps. However, the 
construction of an analytical Hessian requires significant computational effort and may 
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outweigh the advantage of fewer optimization cycles. Currently available analytical 
gradients and Hessians are summarized in Table 9.1. 

Level of Theory/ 
Algorithm 

Analytical 
Gradients 

Maximum Angular 
Momentum Type 

Analytical 
Hessian 

Maximum Angular 
Momentum Type 

DFT 
�

 g �   
HF �  g �  f 
MP2 �  g �   
(V)OD �  g �   
(V)QCCD �  g �   
CIS (except RO) �  g �  f 
CFMM �  g �   

Table 9.1 Gradients and Hessians currently available for geometry optimizations 
with maximum angular momentum types for analytical derivative 
calculations (for higher angular momentum, derivatives are computed 
numerically) 

9.2 USER-CONTROLLABLE PARAMETERS 

Note: Users input starting geometry through the $molecule keyword. 

9.2.1 FEATURES 

• Cartesian, Z-matrix or internal coordinate systems 
• Eigenvector Following (EF) or GDIIS algorithms 
• Constrained optimizations 
• Equilibrium structure searches 
• Transition structure searches 
• Initial Hessian and Hessian update options 
 

9.2.2 JOB CONTROL 

Users must first define what level of theory is required. Refer back to previous sections 
regarding enhancements and customization of these features. EXCHANGE, 
CORRELATION (if required) and BASIS $rem variables must be set. 

The remaining $rem variables are those specifically relating to the OPTIMIZE package. 
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JOBTYPE 
 Specifies the calculation 
 VARIABLE: 
  STRING 
  OPT   Equilibrium structure optimization 
  TS  Transition structure optimization 
 
GEOM_OPT_HESSIAN 
 Hessian status 
 VARIABLE: 
  STRING 
 DEFAULT: 
  DIAGONAL 
 OPTIONS: 
  DIAGONAL Set up (default) diagonal Hessian. 
  READ    Have exact or initial Hessian. Use as is if Cartesian, or 

transform if internals. 
 
GEOM_OPT_COORDS 
 Controls the type of optimization coordinates 
 VARIABLE 
  INTEGER  
 DEFAULT: 
  -1 Generate and optimize in internal coordinates, if this fails at any 

stage of the optimization, switch to Cartesian and continue 
 OPTIONS: 
  0 Optimize in Cartesian coordinates 
  1 Generate and optimize in internal coordinates, if this fails abort 
  -1 Generate and optimize in internal coordinates, if this fails at any 

stage of the optimization, switch to Cartesian and continue 
  2 Optimize in Z-matrix coordinates, if this fails abort 
  -2 Optimize in Z-matrix coordinates, if this fails during any stage of 

the optimization switch to Cartesians and continue 
 RECOMMENDATION: 
  Use the default; delocalized internals are more efficient 
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GEOM_OPT_TOL_GRADIENT 
 Convergence on maximum gradient component 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  300  ≡ 300 x 10-6 tolerance on maximum gradient component 
 OPTIONS: 
  Integer value (tolerance = value x 10-6) 
 RECOMMENDATION: 
   Use the default. To converge GEOM_OPT_TOL_GRADIENT and 

one of GEOM_OPT_TOL_DISPLACEMENT and 
GEOM_OPT_TOL_ENERGY must be satisfied 

 
GEOM_OPT_TOL_DISPLACEMENT 
 Convergence on maximum atomic displacement 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1200  ≡ 1200 x 10-6 tolerance on maximum atomic displacement 
 OPTIONS: 
  Integer value (tolerance = value x 10-6) 
 RECOMMENDATION: 
   Use the default. To converge GEOM_OPT_TOL_GRADIENT and 

one of GEOM_OPT_TOL_DISPLACEMENT and 
GEOM_OPT_TOL_ENERGY must be satisfied 

 
GEOM_OPT_TOL_ENERGY 
 Convergence on energy change of successive optimisation cycles 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  100  ≡ 100 x 10-8 tolerance on maximum gradient component 
 OPTIONS: 
  Integer value (tolerance = value x 10-8) 
 RECOMMENDATION: 
   Use the default. To converge GEOM_OPT_TOL_GRADIENT and 

one of GEOM_OPT_TOL_DISPLACEMENT and 
GEOM_OPT_TOL_ENERGY must be satisfied 
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GEOM_OPT_MAX_CYCLES 
 Maximum number of optimisation cycles 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  20 
 OPTIONS: 
  User defined positive integer 
 RECOMMENDATION: 
  Use the default, increase for difficult cases 
 
GEOM_OPT_PRINT 
 Amount of OPTIMIZE print output 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  3 Error messages, summary, warning, standard information and 

gradient print out 
 OPTIONS: 
  0 Error messages only 
  1 Level 0 plus summary and warning print out 
  2 Level 1 plus standard information 
  3 Level 2 plus gradient print out 
  4 Level 3 plus hessian print out 
  5 Level 4 plus iterative print out 
  6 Level 5 plus internal generation print out 
  7 Debug print out 
 RECOMMENDATION: 
  Use the default 
 

9.2.3 CUSTOMIZATION 

GEOM_OPT_SYMFLAG 
 Controls the use of symmetry in OPTIMIZE 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1 Make use of point group symmetry 
 OPTIONS: 
  1 Make use of point group symmetry 
  0 Do not make use of point group symmetry 
 RECOMMENDATION: 
  Use default 
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GEOM_OPT_MODE 
 Determines Hessian mode followed during TS search 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Mode following off 
 OPTIONS: 
  0 Mode following off 
  n Maximise along mode n 
 RECOMMENDATION: 
  Use default 
 
GEOM_OPT_MAX_DIIS 
 Controls maximum size of subspace for GDIIS 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Do not use GDIIS 
 OPTIONS: 
  0 Do not use GDIIS 
  -1 Default size = min(NDEG, NATOMS, 4) NDEG = number of 

molecular degrees of freedom 
  n Size specified by user 
 RECOMMENDATION: 
  Use default or do not set n too large 
 
GEOM_OPT_DMAX 
 Maximum allowed step size. Value supplied is multiplied by 10-3 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  300 = 0.3 
 OPTIONS: 
  n User-defined cutoff 
 RECOMMENDATION: 
  Use default 
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GEOM_OPT_UPDATE 
 Controls the Hessian update algorithm 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  -1 Use the default update algorithm 
 OPTIONS: 
  -1 Use the default update algorithm 
  0 Do not update the Hessian (not recommended) 
  1 Murtagh-Sargent update 
  2 Powell update 
  3 Powell/Murtagh-Sargent update (TS default) 
  4 BFGS update (OPT default) 
  5 BFGS with safeguards to ensure retention of positive definiteness 

(GDISS default) 
 RECOMMENDATION: 
  Use default 
 
GEOM_OPT_LINEAR_ANGLE 
 Threshold for near linear bond angles (degrees) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  165 degrees 
 OPTIONS: 
  n User-defined level 
 RECOMMENDATION: 
  Use default 
 

Comment: Molecular Critical Points Beginning With Analytical Hessian 
 
As outlined, the rate of convergence of the iterative optimization process is dependent on 
a number of factors, one of which is the use of an initial analytic Hessian. This is easily 
achieved by instructing Q-Chem to calculate an analytic Hessian and proceed then to 
determine the required critical point. This is illustrated in the following example. 
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9.2.4 EXAMPLE 

$molecule 
0 1 
O 
H 1 OH 
H 1 OH 2 HOH 
 
OH = 1.1 
HOH = 104 
$end 
 
$rem 
JOBTYPE  FREQ   Calculate an analytic Hessian 
EXCHANGE  HF 
BASIS  6-31G(D) 
$end 
 
Now proceed with the Optimization making sure to read in the 
analytic Hessian (use other available information too) 
 
@@@ 
$molecule 
READ 
$end 
 
$rem 
JOBTYPE   OPT 
EXCHANGE   HF 
BASIS   6-31G(D) 
SCF_GUESS   READ 
GEOM_OPT_HESSIAN READ  Have the initial Hessian 
$end 

Example 9.1 Geometry optimization for H2O starting with an analytic Hessian 

9.3 CONSTRAINED OPTIMIZATION 

9.3.1 INTRODUCTION 

Constrained optimization refers to the optimization of molecular structures (transition or 
equili brium) in which certain parameters (e.g., bond lengths, bond angles or dihedral 
angles) are fixed. Jon Baker’s OPTIMIZE package implemented in the Q-Chem program 
has been modified to handle constraints directly in delocalized internal coordinates using 
the method of Lagrange multipliers (see appendix). Constraints are imposed in an $opt 
keyword section of the input file. 

Features of constrained optimizations in Q-Chem are: 
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• Starting geometries do not have to satisfy imposed constraints 
• Delocalized internal coordinates are the most eff icient system for large molecules 
• Q-Chem’s free format $opt section allows the user to apply constraints with ease 
 

Note: The $opt input section is case-insensitive and free-format, except that there 
should be no space at the start of each line. 

9.3.2 GEOMETRY OPTIMIZATION WITH GENERAL CONSTRAINTS 

CONSTRAINT and ENDCONSTRAINT define the beginning and end, respectively,  of 
the constraint section of $opt within which users may specify up to six different types of 
constraints: 

interatomic distances (angstroms, value > 0.0): 
stre atom1 atom2 value 
 

angles (degrees, 180.0 ≥ value ≥ 0.0); atom2 is the middle atom of the bend: 
bend atom1 atom2 atom3 value 
 

out-of-plane-bends (degrees, 180.0 ≥ value ≥ -180.0); angle between atom4 and the 
atom1-atom2-atom3 plane: 
outp atom1 atom2 atom3 atom4 value 
 

dihedral angles (degrees, 180.0 ≥ value ≥ -180.0); angle the plane atom1-atom2-atom3 
makes with the plane atom2-atom3-atom4: 
tors atom1 atom2 atom3 atom4 value 
 

coplanar bends (degrees, 180.0 ≥ value ≥ -180.0); bending of atom1-atom2-atom3 in the 
plane atom2-atom3-atom4: 
linc atom1 atom2 atom3 atom4 value 
 

perpendicular bends (degrees, 180.0 ≥ value ≥ -180.0); bending of atom1-atom2-atom3 
perpendicular to the plane atom2-atom3-atom4: 
linp atom1 atom2 atom3 atom4 value 
 



208 Chapter 9: Molecular Geometry Critical Points 

9.3.3 FROZEN ATOMS 

Absolute atom positions can be frozen with the FIXED section. The section starts with 
the FIXED keyword as the first line and ends with the ENDFIXED keyword on the last. 
The format to fix a coordinate or coordinates of an atom is: 

atom coordinate_reference 
 

coordinate_reference can be any combination of up to three characters X, Y and Z to 
specify the coordinate(s) to be fixed: X, Y, Z, XY, XZ, YZ, XYZ. The fixing characters 
must be next to each other. e.g., 

FIXED 
2 XY 
ENDFIXED 
 

means the x-coordinate and y-coordinate of atom 2 are fixed, whereas 

FIXED 
2 X Y 
ENDFIXED 
 

will yield erroneous results. 

Note: When the FIXED section is specified within $opt, the optimization coordinates 
will be Cartesian. 

9.3.4 DUMMY ATOMS 

DUMMY defines the beginning of the dummy atom section and ENDDUMMY its 
conclusion. Dummy atoms are used to help define constraints during constrained 
optimizations in Cartesian coordinates. They cannot be used with delocalized internals. 

All dummy atoms are defined with reference to a list of real atoms, that is, dummy atom 
coordinates are generated from the coordinates of the real atoms from the dummy atoms 
defining list (see below). There are three types of dummy atom: 

1. Positioned at the arithmetic mean of the up to 7 real atoms in the defining list 
2. Positioned a unit distance along the normal to a plane defined by three atoms, centred 

on the middle atom of the three 
3. Positioned a unit distance along the bisector of a given angle 
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The format for declaring dummy atoms is: 

DUMMY 
idum type  list_length defining_list 
ENDDUMMY 
 

idum center number of defining atom (must be one greater than the total number 
of real atoms for the first dummy atom, two greater for second etc.) 

type type of dummy atom (either 1, 2 or 3; see above) 
list_length number of atoms in the defining list 
defining_list list of up to 7 atoms defining the position of the dummy atom 
 

Once defined, dummy atoms can be used to define standard internal (distance, angle) 
constraints as per the constraints section, above. 

Warning: The use of dummy atoms of type 1 has never progressed beyond the 
experimental stage. 

9.3.5 DUMMY ATOM PLACEMENT IN DIHEDRAL CONSTRAINTS 

Bond and dihedral angles cannot be constrained in Cartesian optimizations to exactly 0° 
or ±180°. This is because the corresponding constraint normals are zero vectors. Also, 
dihedral constraints near these two limiting values (within, say 20°) tend to oscillate and 
are difficult to converge. 

These difficulties can be overcome by defining dummy atoms and redefining the 
constraints with respect to the dummy atoms. For example, a dihedral constraint of 180° 
can be redefined to two constraints of 90° with respect to a suitably positioned dummy 
atom. The same thing can be done with a 180° bond angle (long a familiar use in Z-
matrix construction). 
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Typical usage is as follows: 

Internal Coordinates Cartesian Coordinates 

$opt 
CONSTRAINT 
tors I J K L 180.0 
ENDCONSTRAINT 
$end 

$opt 
DUMMY 
M 2 I J K 
ENDDUMMY 
CONSTRAINT 
tors I J K M 90 
tors M J K L 90 
ENDCONSTRAINT 
$end 

Table 9.2 Comparison of dihedral angle constraint method for adopted coordinates. 

The order of atoms is important to obtain the correct signature on the dihedral angles. For 
a 0° dihedral constraint, J and K should be switched in the definition of the second 
torsion constraint in Cartesian coordinates. 

Note: In almost all cases the above discussion is somewhat academic, as internal 
coordinates are now best imposed using delocalized internal coordinates and 
there is no restriction on the constraint values. 

9.3.6 ADDITIONAL ATOM CONNECTIVITY 

Normally delocalized internal coordinates are generated automatically from the input 
Cartesian coordinates. This is accomplished by first determining the atomic connectivity 
list (i.e., which atoms are formally bonded) and then constructing a set of individual 
primitive internal coordinates comprising all bond stretches, all planar bends and all 
proper torsions that can be generated based on the atomic connectivity. The delocalized 
internal are in turn constructed from this set of primitives. 

The atomic connectivity depends simply on distance and there are default bond lengths 
between all pairs of atoms in the code. In order for delocalized internals to be generated 
successfully, all atoms in the molecule must be formally bonded so as to form a closed 
system. In molecular complexes with long, weak bonds or in certain transition states 
where parts of the molecule are rearranging or dissociating, distances between atoms may 
be too great for the atoms to be regarded as formally bonded, and the standard atomic 
connectivity will separate the system into two or more distinct parts. In this event, the 
generation of delocalized internal coordinates will fail. 

Additional atomic connectivity can be included for the system to overcome this 
difficulty. 

CONNECT defines the beginning of the additional connectivity section and 
ENDCONNECT the end. The format of the CONNECT section is: 
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CONNECT 
atom list_length list 
ENDCONNECT 
 

atom atom for which additional connectivity is being defined 
list_length number of atoms in the list of bonded atoms 
list list of up to 8 atoms considered as being bonded to the given atom 
 

9.3.7 EXAMPLE 

$comment 
methanol geom opt with constraints in bond length and bond 
angles. 
$end 
 
$molecule 
0 1 
C 0.141915 0.332682 0.000000 
O 0.141915 -1.088318 0.000000 
H 1.186989 0.656186 0.000000 
H -0.348433 0.742676 0.887862 
H -0.348433 0.742676 -0.887862 
H -0.773953 -1.385902 0.000000 
$end 
 
$rem 
GEOM_OPT_PRINT  6 
GEOM_OPT_COORDS 2 
JOBTYPE   OPT 
EXCHANGE   HF 
BASIS   3-21G Basis Set 
$end 
 
$opt 
CONSTRAINT 
stre 1 6 1.8 
bend 2 1 4 110.0 
bend 2 1 5 110.0 
ENDCONSTRAINT 
$end 
 

Example 9.2 Methanol geometry optimization with constraints. 
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9.3.8 SUMMARY 

$opt 
CONSTRAINT 
stre atom1 atom2 value 
... 
bend atom1 atom2 atom3 value 
... 
outp atom1 atom2 atom3 atom4 value 
... 
tors atom1 atom2 atom3 atom4 value 
... 
linc atom1 atom2 atom3 atom4 value 
... 
linp atom1 atom2 atom3 atom4 value 
... 
ENDCONSTRAINT 
FIXED 
atom coordinate_reference 
... 
ENDFIXED 
DUMMY 
idum type  list_length defining_list 
... 
ENDDUMMY 
CONNECT 
atom list_length list 
... 
ENDCONNECT 
$end 
 

9.4 FURTHER READING 

Appendix A on geometry optimization.  
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Equation Section 10 

CHAPTER 10 MOLECULAR PROPERTIES AND ANALYSIS 

 

10.1 INTRODUCTION 

Q-Chem has incorporated a number of molecular properties and wavefunction analysis 
tools, summarised as follows: 

• Chemical solvent models 
• Population analysis 
• Vibrational analysis 
• Interface to the Natural Bond Orbital package 
• Molecular orbital symmetries 
• Multipole moments 
• Data generation for 2-d or 3-d plots 
 

10.2 CHEMICAL SOLVENT MODELS 

Ab initio quantum chemical programs enable the accurate study of large molecules 
properties in the gas phase. However, some of these properties change significantly in 
solution. The largest changes are expected when going from vapour to polar solutions. 
Although in principle it is possible to model solvation effects upon the solute properties 
by supermolecular (cluster) calculations (e.g., by averaging over several possible 
configurations of the first solvation shell)., these calculations are very demanding. 
Furthermore, the supermolecular calculations cannot, at present, provide accurate and 
stable hydration energies, for which long-range effects are very important. An accurate 
prediction of the hydration free energies is necessary for computer modelling of chemical 
reactions and ligand-receptor interactions in aqueous solution.  Q-Chem contains two 
solvent models, which differ greatly in their level of sophistication and realism.  The 
crude and simple Onsager model is described first, followed by the much more advanced 
Langevin dipoles model developed by Jan Florian and Arieh Warshel of the University 
of Southern California. 

10.2.1 ONSAGER DIPOLE CONTINUUM SOLVENT 

Q-Chem offers a solvent model based on that originally attributed to Onsager [1] in 
which the solute is placed in a spherical cavity surrounded by a continuous medium.  The 
Onsager model requires two parameters: the cavity radius a0 and a dielectric constant ε. 
Typically, the cavity radius is calculated using 

 3
0 3 4ma V Nπ=  (10.1) 
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where Vm is obtained from experiment (molecular weight/density) [2] and N is 
Avogadro’s number. It is also common to add 0.5 Å to the value of a0 from (10.1) to 
account for the first solvation shell [3]. 

See the review by Tomasi and Perisco [4] for further insights into continuum solvent 
models. 

The $rem variables associated with running Onsager reaction field calculations are 
documented below.  Q-Chem requires at least single point energy calculation $rem 
variables BASIS, EXCHANGE and CORRELATION (if required) in addition to the 
Onsager specific variables SOLUTE_RADIUS and SOLVENT_DIELECTRIC. 

SOLUTE_RADIUS 
 Sets the Onsager solvent model cavity radius 
 VARIABLE: 
  INTEGER a0 = SOLUTE_RADIUS/10000 
 DEFAULT: 
  No default 
 OPTIONS: 
  User-defined 
 RECOMMENDATION: 
  Use equation (10.1) 
 
SOLVENT_DIELECTRIC 
 Sets the dielectric constant of the Onsager solvent continuum 
 VARIABLE: 
  INTEGER ε = SOLVENT_DIELECTRIC/10000 
 DEFAULT: 
  No default 
 OPTIONS: 
  User-defined 
 RECOMMENDATION: 
  As per required solvent 
 

10.2.2 LANGEVIN DIPOLES SOLVATION MODEL 

Q-Chem provides the option to calculate molecular properties in aqueous solution and 
the magnitudes of the hydration free energies by the Langevin dipoles (LD) solvation 
model developed by Jan Florián and Arieh Warshel [5,6], of the University of Southern 
Cali fornia.  In this model, a solute molecule is surrounded by a sphere of point dipoles, 
with centers on a cubic lattice. Each of these dipoles (called Langevin dipoles) changes 
its size and orientation in the electrostatic field of the solute and the other Langevin 
dipoles.  The electrostatic field from the solute is determined rigorously by the 
integration of its charge density, whereas for dipole-dipole interactions, a 12 Å cutoff is 
used. The QChem/ChemSol 1.0 implementation of the LD model is fully self-consistent 
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in that the molecular quantum mechanical calculation takes into account solute-solvent 
interactions. Further details on the implementation and parametrization of this model can 
be found in the original literature [5,7].   
 
The results of ChemSol calculations are printed in the standard output file.  Below is a 
part of the output for a calculation on the methoxide anion (corresponding to the sample 
input given later on, and the sample file in the $QC/samples directory). 
 
 
 Iterative Langevin Dipoles (ILD) Results (kcal/mol): 
 ---------------------------------------------------- 
 LD Electrostatic energy                -86.14 
 Hydrophobic energy                       0.28 
 van der Waals energy (VdW)              -1.95 
 Bulk correction                        -10.07 
 Solvation free energy dG(ILD)          -97.87 
 
 
The total hydration free energy, ∆G(ILD) is calculated as a sum of several contributions. 
Note that the electrostatic part of ∆G is calculated by using the linear-response 
approximation [5] and contains contributions from the polarization of the solute charge 
distribution due to its interaction with the solvent.  This results from the self-consistent 
implementation of the Langevin dipoles model within Q-Chem. 
 
In order for an LD calculation to be carried out by the ChemSol program within Q-
Chem, the user must specify a single-point HF or DFT calculation (i.e. at least REM 
variables BASIS, EXCHANGE and CORRELATION) in addition to setting CHEMSOL 
REM variable to 1 in the $rem keyword section. 
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CHEMSOL  

Controls the use of ChemSol in Q-Chem 
VARIABLE: 

  INTEGER 
DEFAULT: 

  0  Do not use ChemSol 
OPTIONS: 

  1  Perform a ChemSol calculation 
 
CHEMSOL_EFIELD 

Determines how the solute charge distribution is approximated in evaluating the 
electrostatic field of the solute. 
VARIABLE: 

  INTEGER 
DEFAULT: 

  1  Exact solute charge distribution is used. 
OPTION: 

0 Solute charge distribution is approximated by Mulliken 
atomic charges. This is a faster, but less rigorous 
procedure. 

 
CHEMSOL_NN 

Sets the number of grids used to calculate the average hydration free energy. 
VARIABLE: 

  INTEGER 
DEFAULT: 

  5  ∆Ghydr will be averaged over 5 different grids 
OPTIONS: 

  n  number of different grids (Max = 20). 
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10.2.3 CUSTOMIZING LANGEVIN DIPOLES SOLVATION CALCULATIONS 

Accurate calculations of hydration free energies require a judicious choice of the solute-
solvent boundary in terms of atom-type dependent parameters. The default atomic van 
der Waals radii available in Q-Chem were chosen to provide reasonable hydration free 
energies for most solutes and basis sets. These parameters basically coincide with the 
ChemSol 2.0 radii given in reference [7]. The only difference between the Q-Chem and 
ChemSol 2.0 atomic radii stems from the fact that Q-Chem parameter set uses 
hybridization independent radii for carbon and oxygen atoms. 

User-defined atomic radii can be specified in the $van_der_waals section of the input file 
after setting READ_VDW REM variable to true. Two different (mutually exclusive) 
formats can be used, as shown below (Table 10.1). The purpose of format 2 is to permit 
the user to customize the radius of specific atoms, rather than simply by atomic numbers 
as in format 1.  The radii of atoms that are not listed in the $van_der_waals input will be 
assigned default values. The atomic radii that were used in the calculation are printed in 
the ChemSol part of the output file in the column denoted rp.  

 
 

$van_der_waals  
1 
atomic number      VdW- radius (Å)  
...  
$end  
 

$van_der_waals  
2 
sequential atom num ber    VdW- radius (Å)  
...  
$end  
 

Figure 10.1 The two different formats available for the input of user-defined atomic 
radii for ChemSol calculations in Q-Chem.  The first format associates 
input radii with atomic numbers.  The second format associates input 
radii with individual atoms, in the order they appear in the $molecule 
section. 
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10.2.4 EXAMPLE 

$molecule 
   -1   1 
   C        .0000    .0000   -.5274 
   O        .0000    .0000    .7831 
   H        .0000   1.0140  -1.0335 
   H        .8782   -.5070  -1.0335 
   H       -.8782   -.5070  -1.0335 
$end 
 
$rem 
   EXCHANGE           HF 
   BASIS              6-31G   Basis Set 
   SCF_CONVERGENCE    6 
   CHEMSOL            1 
   READ_VDW           true 
$end 
 
$van_der_waals 
   2 
   1 2.5 
$end 
 

Example 10.1 A Langevin dipoles calculation on the methoxide anion.  A customized 
value is specified for the radius of the C atom. 
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10.3 WAVEFUNCTION ANALYSIS 

Q-Chem performs a number of standard wavefunction analyses by default. Switching the 
$rem variable WAVEFUNCTION_ANALYSIS to FALSE will prevent the calculation of 
all wavefunction analysis features (described in this section). Alternatively, each 
wavefunction analysis feature may be controlled by its $rem variable. (The NBO package 
which is interfaced with Q-Chem is capable of performing more sophisticated analyses. 
See later in this chapter and the NBO manual for details). 

WAVEFUNCTION_ANALYSIS 
 Controls the running of the default wavefunction analysis tasks 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  TRUE  Perform default wavefunction analysis 
 OPTIONS: 
  TRUE  Perform default wavefunction analysis 
  FALSE Do not perform default wavefunction analysis 
 

Note: WAVEFUNCTION_ANALYSIS has no effect on NBO, solvent models or 
vibrational analyses. 

10.3.1 POPULATION ANALYSIS 

The one-electron charge density, usually written as 

 ( ) ( ) ( )Pµν µ ν
µν

ρ φ φ= ∑r r r  (10.2) 

represents the probability of finding an electron at the point r, but implies little regarding 
the number of electrons associated with a given nucleus in a molecule. However, since 
the number of electrons N is related to the occupied orbitals ψi by 

 
2

2
2 ( ) d

N

a
a

N ψ= ∑ r r  (10.3) 

we can substitute the basis expansion of ψa into (8.3) and obtain 

 ( )N P S trµυ µυ µµ
µ υ µ

= = =∑∑ ∑ PS PS  (10.4) 

where we interpret (PS)µµ as the number of electrons associated with φµ. If the basis 
functions are atom-centred, the number of electrons associated with a given atom can be 
obtained by summing over all the basis functions. This leads to the Mulliken formula for 
the net charge of the atom A 
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 ( )A A
A

q Z µµ
µ∈

= − ∑ PS  (10.5) 

where ZA
 is the atom’s nuclear charge. This is called a Mulli ken population analysis [8]. 

Q-Chem performs a Mulli ken population analysis by default. 

POP_MULLIKEN 
 Controls running of Mulli ken population analysis 
 VARIABLE: 
  LOGICAL/INTEGER 
 DEFAULT: 
  TRUE (1) Calculate Mulli ken population 
 OPTIONS: 
  FALSE (0) Do not calculate Mulli ken Population 
  TRUE (1) Calculate Mulli ken population 
  2  Also calculate shell populations for each occupied orbital. 
 RECOMMENDATIONS: 
  TRUE.  Trivial additional calculation 
 

10.3.2 MULTIPOLE MOMENTS 

Q-Chem can compute Cartesian multipole moments of the charge density to arbitrary 
order. 

MULTIPOLE_ORDER 
 Determines highest order of multipole moments to print if wavefunction analysis 

requested 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  4 
 OPTIONS: 
  n Calculate moments to nth order 
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10.3.3 SYMMETRY DECOMPOSITION 

Q-Chem’s default is to write the SCF wave function molecular orbital symmetries and 
energies to the output file. If requested, a symmetry decomposition of the kinetic and 
nuclear attraction energies can also be calculated. 

SYMMETRY_DECOMPOSITION 
 Determines symmetry decompositions to calculate 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1 Calculate MO eigenvalues and symmetry (if available) 
 OPTIONS: 
  0 No symmetry decomposition 
  1 Calculate MO eigenvalues and symmetry (if available) 

2 Perform symmetry decomposition of kinetic energy and nuclear 
attraction matrices 

 

10.4 VIBRATIONAL ANALYSIS 

Vibrational analysis is an extremely important tool for the quantum chemist, supplying a 
molecular fingerprint which is invaluable for aiding identification of molecular species in 
many experimental studies. Q-Chem includes a vibrational analysis package that can 
calculate vibrational frequencies and their Raman [9] and infrared activities. Vibrational 
frequencies are calculated by either using an analytic Hessian (if available, Table 9.1) or, 
numerical finite difference of the gradient. The default setting in Q-Chem is to use the 
highest analytical derivative order available for the requested theoretical method. 

Following a vibrational analysis, Q-Chem computes useful statistical thermodynamic 
properties at standard temperature and pressure, including: zero-point vibration energy 
(ZPVE) and, translational, rotational and vibrational, entropies and enthalpies. 

The performance of various ab initio theories in determining vibrational frequencies has 
been well documented. See references [10,11,12]. 

10.4.1 JOB CONTROL 

In order to carry out a frequency analysis users must at a minimum provide a molecule 
within the $molecule keyword and define an appropriate level of theory within the $rem 
keyword using the $rem variables EXCHANGE, CORRELATION (if required) (Chapter 
4) and BASIS (Chapter 6). Since the default type of job (JOBTYPE) is a single point 
energy (SP) calculation, the JOBTYPE $rem variable must be set to FREQ. 

It is very important to note that a vibrational frequency analysis must be performed at a 
stationary point on the potential surface that has been optimized at the same level of 
theory.  Therefore a vibrational frequency analysis most naturally follows a geometry 
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optimization in the same input deck, where the molecular geometry is obtained (see 
examples). 

JOBTYPE 
 Specifies the calculation. 
 VARIABLE: 
  STRING 
 OPTION: 
  FREQ  Frequency Calculation 
 

The standard output from a frequency analysis includes the following.  At the time of 
writing, isotopic substitution is not yet available. 

• Vibrational frequencies 
• Raman and IR activities and intensities (requires $rem DORAMAN) 
• Atomic masses 
• Zero-point vibrational energy 
• Translational, rotational, and vibrational, entropies and enthalpies 
 

Several other $rem variables are available that control the vibrational frequency analysis.  
In detail, they are: 

DORAMAN 
 Controls calculation of Raman intensities. Requires JOBTYPE to be set to FREQ 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE Do not calculate Raman intensities 
 OPTIONS: 
  FALSE Do not calculate Raman intensities 
  TRUE  Do calculate Raman intensities 
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VIBMAN_PRINT 
 Controls level of extra print out for vibrational analysis 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1 Standard full information print out 
 OPTIONS: 
  1 Standard full information print out 
  3 Level 1 plus vibrational frequencies in atomic units 
  4 Level 3 plus mass-weighted Hessian matrix, projected mass-

weighted Hessian matrix 
  6 Level 4 plus vectors for translations and rotations projection 

matrix 
 RECOMMENDATION: 
  Use default 
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10.4.2 EXAMPLE 

$molecule 
0 1 

   O 
   C, 1, CO 
   F, 2, FC, 1, FCO 
   H, 2, HC, 1, HCP, 3, 180.0 
 
   CO=1.2 
   FC=1.4 
   HC=1.0 
   FCO=120.0 
   HCO=120.0 
$end 
 
$rem 
   jobtype     = opt 
   exchange    = edf1 
   basis       = 6-31+G* 
$end 
 
@@@ 
 
$molecule 
   READ 
$end 
 
$rem 
   jobtype     = freq 
   exchange    = edf1 
   basis       = 6-31+G* 
$end 
 
Example 10.2 An EDF1/6-31+G* optimization, followed by a vibrational analysis.  

Doing the vibrational analysis at a stationary point is necessary for the 
results to be valid. 
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10.5 INTERFACE TO THE NBO PACKAGE 

Q-Chem has incorporated the Natural Bond Orbital package (v4.0) for molecular 
properties and wavefunction analysis. The NBO package is invoked either by setting the 
$rem variable NBO to TRUE and is initiated after the SCF wavefunction is obtained. 
Users are referred to the NBO users manual for options and details relating to 
exploitation of the features offered in this package. 

10.5.1 JOB CONTROL 

If switched on for a geometry optimization, the NBO package will only be invoked at the 
end of the last optimization step. 

NBO 
 Controls the use of the NBO package 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE Do not invoke the NBO package 
 OPTIONS: 
  FALSE Do not invoke the NBO package 
  TRUE  Do invoke the NBO package 
 

$nbo 
{NBO program keywords, parameters and options} 
$end 

Figure 10.2 General format for requesting the NBO program from Q-Chem. 

Notes: (1) $rem variable NBO must be set to TRUE before the $nbo keyword is 
recognized. 

 (2) Q-Chem does not currently support facets of the NBO package which 
require multiple job runs. 
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10.6 PLOTTING DENSITIES AND ORBITALS 

The best way to visualize the charge densities and molecular orbitals that Q-Chem 
evaluates is with an integrated graphical user interface.  Alternatively, Q-Chem can 
evaluate a range of densities and orbitals on a user-specified grid of points by invoking 
the $plots option, which is itself enabled by requesting IANLTY = 200. 

The format of the $plots input is documented below.  It permits molecular orbitals to be 
plotted.  Additionally the SCF ground density can be plotted, as well as excited state 
densities (at either the CIS, RPA or TDDFT/TDA or TDDFT).  Also in connection with 
excited states, either transition densities or attachment-detachment densities (at the same 
levels of theory given above) can be plotted as well. 

The output from the $plots command is one (or several) ASCII files in the working 
directory, named plots.mo, etc.  The results then must be visualized with a third party 
program capable of making 3-d plots. 

An example of the use of the $plots option is the following input deck: 

$molecule 
   0 1 
   H 0.0 0.0 0.35 
   H 0.0 0.0 -0.35 
$end 
 
$rem 
   exchange    = hf 
   basis       = 6-31g** 
   ianlty      = 200 
$end 
 
$plots 
   plot the HOMO and the LUMO on a line 
   1 0.0 0.0 
   1 0.0 0.0 
   15 -3.0 3.0 
   2 0 0 0 
   1 2 
$end 
 
 
Example 10.3 A job that evaluates the H2 HOMO and LUMO on a 1 by 1 by 15 grid, 

along the bond axis.  The plotting output is in an ASCII file called plot.mo, 
which lists for each grid point, x, y, z, and the value of each requested MO. 
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$plots 

• One comment line 

   My comment here... 

• Specification of the 3-d mesh of points on 3 lines: 

Nx  xmin  xmax   (# x points, x range in Angstroms) 

Ny  ymin  ymax 

Nz  zmin  zmax 

• A line with 4 integers indicating how many things to plot: 

NMO  NRho  NTrans  NDA 

• An optional li ne with the integer li st of MO's to evaluate (only if NMO > 0) 

MO(1)  MO(2)  ...  MO(NMO) 

• An optional li ne with the integer li st of densities to evaluate (only if NRho > 0) 

Rho(1)  Rho(2)  ...  Rho(NRho) 

• An optional li ne with the integer li st of transition densities (only if Ntrans > 0) 

Trans(1) Trans(2) ... Trans(NTrans) 

• An optional li ne with states for detachment/attachment densities (only if NDA > 0) 

DA(1)  DA(2)  ...  DA(NDA) 

$end 

 

Figure 10.3 General format for the $plots section of the Q-Chem input deck. 

 

Line 1 of the $plots keyword section is reserved for comments. Lines 2-4 list the number 
of one dimension points and the range of the grid (note that coordinate ranges are in 
Angstroms, while all output is in atomic units). Line 5 must contain 4 non-negative 
integers indicating the number of: molecular orbitals (Nmo), electron densities (Nrho), 
transition densities and attach/detach densities (Nda), to have mesh values calculated. 
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The final li nes specify which MOs, electron densities, transition densities and CIS 
attach/detach states are to be plotted (the line can be left blank, or removed, if the 
number of items to plot is zero). Molecular orbitals are numbered 1 ... Nα, Nα + 1 ... Nα 
+ Nβ; electron densities numbered where 1= ground state, 2 = first excited state, 3 = 
second excited state, etc.; and attach/detach specified from state 1→Nda. 

All output data is printed to files in the working directory, overwriting any existing file 
of the same name. Molecular orbital data is printed to a file called “plot.mo” ; densities to 
“plots.hf” ; restricted unrelaxed attachment/detachment analysis to “plot.attach.alpha” 
and “plot.detach.alpha” ; unrestricted unrelaxed attachment/detachment analysis to 
“plot.attach.alpha” , “plot.detach.alpha” , “plot.attach.beta” and “plot.detach.beta” ; 
restricted relaxed attachment/detachment analysis to “plot.attach.rlx.alpha” and 
“plot.detach.rlx.alpha” ; unrestricted relaxed attachment/detachment analysis to 
“plot.attach.rlx.alpha” , “plot.detach.rlx.alpha” , “plot.attach.rlx.beta” and 
“plot.detach.rlx.beta” . Output is printed in atomic units - coordinates first followed by 
item value. 

x1 y1 z1 a1 a2 .... aN 
x2 y1 z1 b1 b2 .... bN 
... 

Figure 10.4 File output format for all raw plotting data. 
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10.7 ELECTROSTATIC POTENTIALS 

Q-Chem can evaluate electrostatic potentials on a grid of points.  Electrostatic potential 
evaluation is controlled by the $rem variable IGDESP, as documented below: 
 
 
IGDESP 

Controls evaluation of the electrostatic potential on a grid of points.  If enabled, 
the output is in an ACSII file, plot.esp, in the format x,y,z,esp for each point. 
VARIABLE: 

  INTEGER 
DEFAULT: 

  none  no electrostatic potential evaluation 
OPTIONS: 

  −1  read grid input via the $plots section of the input deck 
  +n  read n grid points from the ACSII file ESPGrid 
 
The following example illustrates the evaluation of electrostatic potentials on a grid: 
 
$molecule 
   0 1 
   H 0.0 0.0 0.35 
   H 0.0 0.0 -0.35 
$end 
 
$rem 
   exchange    = hf 
   basis       = 6-31g** 
   ianlty      = 200 
$end 
 
$plots 
   plot the HOMO and the LUMO on a line 
   1 0.0 0.0 
   1 0.0 0.0 
   15 -3.0 3.0 
   2 0 0 0 
   1 2 
$end 
 
 
Example 10.4 A job that evaluates the electrostatic potential for H2 on a 1 by 1 by 15 

grid, along the bond axis.  The output is in an ASCII file called plot.esp, 
which lists for each grid point, x, y, z, and the electrostatic potential. 
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CHAPTER 11 EXTENDED CUSTOMIZATION 

 

11.1 USER-DEPENDENT AND MACHINE-DEPENDENT CUSTOMIZATION 

Q-Chem has developed a simple mechanism for users to set user-defined long-term 
defaults to override the built -in program defaults. Such defaults may be most suited to 
machine specific features such as memory allocation, as the total available memory will 
vary from machine to machine depending on specific hardware and accounting 
configurations. However, users may identify other important uses for this customization 
feature. 

Q-Chem obtains input initialization variables from four sources: 

1. user input file 
2. $HOME/.qchemrc file 
3. $QC/config/preferences file 
4. program defaults 
 

The order of preference of initialisation is summarised in the diagram contained in Figure 
11.1, where the higher placed input mechanism overrides the lower. 

Details of the requirements of the Q-Chem input file have been discussed in detail i n this 
manual and in addition, many of the various program defaults which have been set by 
Q-Chem. However, in reviewing the variables and defaults, users may identify $rem 
variable defaults that they find too limiti ng or, variables which they find repeatedly need 
to be set within their input files for maximum exploitation of Q-Chem’s features. Rather 
than continually having to remember to place such variables into the Q-Chem input file, 
users are able to set long-term defaults which are read each time the user runs a Q-Chem 
job. This is done by placing these defaults into the file .qchemrc stored in the users home 
directory. Additionally, system administrators can override Q-Chem defaults with an 
additional preferences file in the $QC/config directory achieving a hierarchy of input as 
ill ustrated in figure 11.1. 

Note: The .qchemrc and preferences files are not requisites for running Q-Chem and 
currently only support $rem keywords. 
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Input file

.qchemrc

preferences

Q-Chem defaults

 

Figure 11.1 Diagram of input initialisation override settings. The higher mechanism 
indicates override preference of lower mechanisms of input. 

11.1.1 .QCHEMRC  AND PREFERENCES FILE FORMAT 

The format of the .qchemrc and preferences files is similar to that for the input file, 
except that only a $rem keyword section may be entered, terminated with the usual $end 
keyword. Any other keyword sections will be ignored. 

It is important that the .qchemrc and preferences files have appropriate file permissions 
so that they are readable by the user invoking Q-Chem. 
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$rem 
rem_variable  option comment 
rem_variable  option comment 
... 
$end 
 

Figure 11.2 Format of the .qchemrc and preferences files 

$rem 
INCORE_INTS_BUFFER 4000000 More integrals in memory 
DIIS_SUBSPACE_SIZE 5 Modify max DIIS subspace size 
THRESH   10 
$end 

Example 11.1 An example of a .qchemrc file to apply program default override $rem 
settings to all of the user’s Q-Chem jobs. 

11.1.2 RECOMMENDATIONS 

As mentioned, the customization files are specifically suited for placing long-term 
machine specific defaults, as clearly some of the defaults placed by Q-Chem will not be 
optimal on large or very small machines. The following $rem variables are examples of 
those which should be considered, but the user is free to include as few or as many as 
desired (CD_DISK, INCORE_INTS_BUFFER, MEMORY, SCF_CONVERGENCE, 
THRESH, NBO). 

Q-Chem will print a warning message to advise the user if a $rem keyword section has 
been detected in either .qchemrc or preferences. 



234 Chapter 11: Extended Customization 

11.2 Q-CHEM AUXILIARY FILES ($QCAUX) 

The $QCAUX environment variable determines the directory where Q-Chem searches for 
data files and the machine license. This directory defaults to $QC/aux. Presently, the 
$QCAUX contains four subdirectories: atoms, basis, drivers and license. The atoms 
directory contains data used for the SAD (Chapter 4) SCF density guess; basis contains 
the exponents and contraction coeff icients for the standard basis sets available in Q-Chem 
(Chapter 7); drivers contains important information for Q-Chem’s AOINTS package and 
the license directory contains the user li cense. By setting the $QCAUX variable, the aux 
directory may be moved to a separate location from the rest of the program, e.g., to save 
disk space. Alternatively, one may place a soft link in $QC to the actual aux directory. 

Users should not alter any files or directories within $QCAUX unless directed by 
Q-Chem, Inc. 

11.3 ADDITIONAL Q-CHEM OUTPUT 

The following features are under development and users are advised that those presented, 
and the format requirements to invoke them, are subject to change in future releases. 

11.3.1 THIRD PARTY FCHK FILE 

Q-Chem can be instructed to output a third party “ fchk”  file, “Test.FChk” , to the working 
directory by setting the $rem variable GUI to 2. Please note that for future releases of 
Q-Chem this feature, and the method used to invoke it, is subject to change.  
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APPENDIX A GEOMETRY OPTIMIZATION WITH Q-CHEM 

 

A.1 INTRODUCTION 

Geometry optimization refers to the determination of stationary points, principally 
minima and transition states, on molecular potential energy surfaces. It is an iterative 
process, requiring the repeated calculation of energies, gradients and (possibly) Hessians 
at each optimization cycle until convergence is attained. The optimization step involves 
modifying the current geometry, utilizing current and previous energy, gradient and 
Hessian information to produce a revised geometry which is closer to the target 
stationary point than its predecessor was. The art of geometry optimization lies in 
calculating the step h, the displacement from the starting geometry on that cycle, so as to 
converge in as few cycles as possible. 

There are four main factors that influence the rate of convergence. These are: 

1. initial starting geometry 
2. algorithm used to determine the step h 
3. quality of the Hessian (second derivative) matrix 
4. coordinate system chosen 
 

The first of these factors is obvious: the closer the initial geometry is to the final 
converged geometry the fewer optimization cycles it will take to reach it. The second 
factor is again obvious: if a poor step h is predicted, this will obviously slow down the 
rate of convergence. The third factor is related to the second: the best algorithms make 
use of second derivative (curvature) information in calculating h, and the better this 
information is, the better will be the predicted step. The importance of the fourth factor 
(the coordinate system) has only been generally appreciated relatively recently: a good 
choice of coordinates can enhance the convergence rate by an order of magnitude (a 
factor of 10) or more, depending on the molecule being optimized. 

Q-Chem includes a powerful suite of algorithms for geometry optimization written by 
Jon Baker and known collectively as OPTIMIZE. These algorithms have been developed 
and perfected over the past ten years and the code is robust and has been well tested. 
OPTIMIZE is a general geometry optimization package for locating both minima and 
transition states. It can optimize using Cartesian, Z-matrix coordinates or delocalized 
internal coordinates. The last of these are generated automatically from the Cartesian 
coordinates and are often found to be particularly effective. It also handles fixed 
constraints on distances, angles, torsions and out-of-plane bends, between any atoms in 
the molecule, whether or not the desired constraint is satisfied in the starting geometry. 
Finally it can freeze atomic positions, or any X, Y, Z Cartesian atomic coordinates. 
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OPTIMIZE is designed to operate with minimal user input. All that is required is the 
initial guess geometry, either in Cartesian coordinates (e.g. from a suitable model builder 
such as HyperChem) or as a Z-matrix, the type of stationary point being sought 
(minimum or transition state) and details of any imposed constraints. All decisions as to 
the optimization strategy (what algorithm to use, what coordinate system to choose, how 
to handle the constraints) are made by OPTIMIZE. 

Note particularly, that although the starting geometry is input in a particular coordinate 
system (as a Z-matrix, for example) these coordinates are not necessarily used during the 
actual optimization. The best coordinates for the majority of geometry optimizations are 
delocalized internals, and these will be tried first. Only if delocalized internals fail for 
some reason, or if conditions prevent them being used (e.g., frozen atoms) will other 
coordinate systems be tried. If all else fails the default is to switch to Cartesian 
coordinates. Similar defaults hold for the optimization algorithm, maximum step size, 
convergence criteria, etc. You may of course override the default choices and force a 
particular optimization strategy, but it is not normally necessary to provide OPTIMIZE 
with anything other than the minimal information outlined above. 

The heart of the OPTIMIZE package (for both minima and transition states) is Baker's 
EF (Eigenvector Following) algorithm [1]. This was developed following the work of 
Cerjan and Mill er [2] and, Simons and coworkers [3, 4]. The Hessian mode-following 
option incorporated into this algorithm is capable of locating transition states by walking 
uphill from the associated minima. By following the lowest Hessian mode, the EF 
algorithm can locate transition states starting from any reasonable input geometry and 
Hessian. 

An additional option available for minimization is Pulay's GDIIS algorithm [5], which is 
based on the well known DIIS technique for accelerating SCF convergence [6]. GDIIS 
must be specifically requested, as the EF algorithm is the default. 

Although optimizations can be carried out in Cartesian or Z-matrix coordinates, the best 
choice, as noted above, is usually delocalized internal coordinates. These coordinates 
were developed very recently by Baker et al [7], and can be considered as a further 
extension of the natural internal coordinates developed by Pulay et al [8, 9] and the 
redundant optimization method of Pulay and Fogarasi [10]. 

OPTIMIZE incorporates a very accurate and eff icient Lagrange multiplier algorithm for 
constrained optimization. This was originally developed for use with Cartesian 
coordinates [11, 12] and can handle constraints that are not satisfied in the starting 
geometry. Very recently the Lagrange multiplier approach has been modified for use 
with delocalized internals [13]; this is much more eff icient and is now the default. The 
Lagrange multiplier code can locate constrained transition states as well as minima. 
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A.2 THEORETICAL BACKGROUND 

A.2.1 THE NEWTON-RAPHSON STEP 

Consider the energy, E(x0) at some point x0 on a potential energy surface. We can express 
the energy at a nearby point x = x0 + h by means of the Taylor series 
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If we knew the exact form of the energy functional E(x) and all its derivatives, we could 
move from the current point x0 directly to a stationary point, (i.e., we would know 
exactly what the step h ought to be). Since we typically know only the lower derivatives 
of E(x) at best, then we can estimate the step h by differentiating the Taylor series with 
respect to h, keeping only the first few terms on the right hand side, and setting the left 
hand side, dE(x0+h)/dh, to zero, which is the value it would have at a genuine stationary 
point. Thus 
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From which 

 h H g= −1  (A.3) 

where 
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(A.3) is known as the Newton-Raphson step. It is the major component of almost all 
geometry optimization algorithms in quantum chemistry. 

The above derivation assumed exact first (gradient) and second (Hessian) derivative 
information. Analytical gradients are available for all methodologies supported in 
Q-Chem; however analytical second derivatives are not. Furthermore, even if they were, 
it would not necessarily be advantageous to use them as their evaluation is usually 
computationally demanding, and, efficient optimizations can in fact be performed 
without an exact Hessian. An excellent compromise in practice is to begin with an 
approximate Hessian matrix, and update this using gradient and displacement information 
generated as the optimization progresses. In this way the starting Hessian can be 
"improved" at essentially no cost. Using (A.3) with an approximate Hessian is called the 
quasi Newton-Raphson step. 
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The nature of the Hessian matrix (in particular its eigenvalue structure) plays a crucial 
role in a successful optimization. All stationary points on a potential energy surface have 
a zero gradient vector; however the character of the stationary point (i.e., what type of 
structure it corresponds to) is determined by the Hessian. Diagonalization of the Hessian 
matrix can be considered to define a set of mutually orthogonal directions on the energy 
surface (the eigenvectors) together with the curvature along those directions (the 
eigenvalues). At a local minimum (corresponding to a well in the potential energy 
surface) the curvature along all of these directions must be positive, reflecting the fact 
that a small displacement along any of these directions causes the energy to rise. At a 
transition state, the curvature is negative (i.e., the energy is a maximum) along one 
direction, but positive along all the others. Thus, for a stationary point to be a transition 
state the Hessian matrix at that point must have one and only one negative eigenvalue, 
while for a minimum the Hessian must have all positive eigenvalues. In the latter case the 
Hessian is called positive definite. If searching for a minimum it is important that the 
Hessian matrix be positive definite; in fact, unless the Hessian is positive definite there is 
no guarantee that the step predicted by (A.3) is even a descent step (i.e., a direction that 
will actually lower the energy). Similarly, for a transition state search, the Hessian must 
have one negative eigenvalue. Maintaining the Hessian eigenvalue structure is not 
difficult for minimization, but it can be a difficulty when trying to find a transition state. 

In a diagonal Hessian representation the Newton-Raphson step can be written 

 h u= −∑ F

b
i

i
i  (A.4) 

where ui and bi are the eigenvectors and eigenvalues of the Hessian matrix H and Fi = ui

tg 
is the component of g along the local direction (eigenmode) ui. As discussed by Simons 
et al. [3], the Newton-Raphson step can be considered as minimizing along directions ui 
which have positive eigenvalues and maximizing along directions with negative 
eigenvalues. Thus, if the user is searching for a minimum and the Hessian matrix is 
positive definite, then the Newton-Raphson step is appropriate since it is attempting to 
minimize along all directions simultaneously. However, if the Hessian has one or more 
negative eigenvalues, then the basic Newton-Raphson step is not appropriate for a 
minimum search, since it will be maximizing and not minimizing along one or more 
directions. Exactly the same arguments apply during a transition state search except that 
the Hessian must have one negative eigenvalue, because the user has to maximize along 
one direction. However, there must be only one negative eigenvalue. A positive definite 
Hessian is a disaster for a transition state search because the Newton-Raphson step will 
then lead towards a minimum. 

If firmly in a region of the potential energy surface with the right Hessian character, then 
a careful search (based on the Newton-Raphson step) will almost always lead to a 
stationary point of the correct type. However, this is only true if the Hessian is exact. If 
an approximate Hessian is being improved by updating, then there is no guarantee that 
the Hessian eigenvalue structure will be retained from one cycle to the next unless one is 
very careful during the update. Updating procedures that "guarantee" conservation of a 
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positive definite Hessian do exist (or at least warn the user if the update is likely to 
introduce negative eigenvalues). This can be very useful during a minimum search; but 
there are no such guarantees for preserving the Hessian character (one and only one 
negative eigenvalue) required for a transition state. 

In addition to the difficulties in retaining the correct Hessian character, there is the matter 
of obtaining a "correct" Hessian in the first instance. This is particularly acute for a 
transition state search. For a minimum search it is possible to "guess" a reasonable, 
positive-definite starting Hessian (for example, by carrying out a molecular mechanics 
minimization initially and using the mechanics Hessian to begin the ab initio 
optimization) but this option is usually not available for transition states. Even if the user 
calculates the Hessian exactly at the starting geometry, the guess for the structure may 
not be sufficiently accurate, and the expensive, exact Hessian may not have the desired 
eigenvalue structure. 

Consequently, particularly for a transition state search, an alternative to the basic 
Newton-Raphson step is clearly needed, especially when the Hessian matrix is 
inappropriate for the stationary point being sought. 

One of the first algorithms that was capable of taking corrective action during a transition 
state search if the Hessian had the wrong eigenvalue structure, was developed by 
Poppinger [14], who suggested that, instead of taking the Newton- Raphson step, if the 
Hessian had all positive eigenvalues, the lowest Hessian mode be followed uphill; 
whereas, if there were two or more negative eigenvalues, the mode corresponding to the 
least negative eigenvalue be followed downhill. While this step should lead the user back 
into the right region of the energy surface, it has the disadvantage that the user is 
maximizing or minimizing along one mode only, unlike the Newton-Raphson step which 
maximizes/minimizes along all modes simultaneously. Another drawback is that 
successive such steps tend to become linearly dependent, which degrades most of the 
commonly used Hessian updates. 

A.2.2 THE EIGENVECTOR FOLLOWING (EF) ALGORITHM 

The work of Cerjan and Miller [2], and later Simons and coworkers [3, 4], showed that 
there was a better step than simply directly following one of the Hessian eigenvectors. A 
simple modification to the Newton-Raphson step is capable of guiding the search away 
from the current region towards a stationary point with the required characteristics. This 
is 

 ( )h u= −
−∑ F

b
i

i
iλ
 (A.5) 

in which λ can be regarded as a shift parameter on the Hessian eigenvalue bi. Scaling the 
Newton-Raphson step in this manner effectively directs the step to lie primarily, but not 
exclusively (unlike Poppinger's algorithm [14]), along one of the local eigenmodes, 
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depending on the value chosen for λ. References [2-4] all utilize the same basic approach 
(A.5) but differ in the means of determining the value of λ. 

The EF algorithm [1] utilizes the rational function approach presented in [4], yielding an 
eigenvalue equation of the form 
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from which a suitable λ can be obtained. Expanding (A.6) gives 

 ( )H h g− + =λ 0 (A.7a) 

 g ht = λ  (A.7b) 

In terms of a diagonal Hessian representation, (A.7a) rearranges to (A.5), and substitution 
of (A.5) into the diagonal form of (A.7b) gives 
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which can be used to evaluate λ iteratively. 

The eigenvalues, λ, of the RFO equation (A.6) have the following important properties 
[4]: 

1. The (n+1) values of λ bracket the n eigenvalues of the Hessian matrix λ
i
 < bi

 < λ
i+1

 
2. At a stationary point, one of the eigenvalues, λ, of (A.6) is zero and the other n 

eigenvalues are those of the Hessian at the stationary point. 
3. For a saddle point of order m, the zero eigenvalue separates the m negative and the 

(n-m) positive Hessian eigenvalues. 
 

This last property, the separability of the positive and negative Hessian eigenvalues, 
enables two shift parameters to be used, one for modes along which the energy is to be 
maximized and the other for which it is minimized. For a transition state (a first-order 
saddle point), in terms of the Hessian eigenmodes, we have the two matrix equations 
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where it is assumed that we are maximizing along the lowest Hessian mode u1. Note that 
λp is the highest eigenvalue of (A.9a) (it is always positive and approaches zero at 
convergence) and λn is the lowest eigenvalue of (A.9b) (it is always negative and again 
approaches zero at convergence). 

Choosing these values of λ gives a step that attempts to maximize along the lowest 
Hessian mode, while at the same time minimizing along all the other modes. It does this 
regardless of the Hessian eigenvalue structure (unlike the Newton-Raphson step). The 
two shift parameters are then used in (A.5) to give the final step 
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If this step is greater than the maximum allowed, it is scaled down. For minimization 
only one shift parameter, λn, would be used which would act on all modes. 

In (A.9a) and (A.9b) it was assumed that the step would maximize along the lowest 
Hessian mode, b1, and minimize along all the higher modes. However, it is possible to 
maximize along modes other than the lowest, and in this way perhaps locate transition 
states for alternative rearrangements/dissociations from the same initial starting point. 
For maximization along the kth mode (instead of the lowest), (A.9a) is replaced by 
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and (A.9b) would now exclude the kth mode but include the lowest. Since what was 
originally the kth mode is the mode along which the negative eigenvalue is required, then 
this mode will eventually become the lowest mode at some stage of the optimization. To 
ensure that the original mode is being followed smoothly from one cycle to the next, the 
mode that is actually followed is the one with the greatest overlap with the mode 
followed on the previous cycle. This procedure is known as mode following. For more 
details and some examples, see [1]. 
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A.3 DELOCALIZED INTERNAL COORDINATES 

The choice of coordinate system can have a major influence on the rate of convergence 
during a geometry optimization. For complex potential energy surfaces with many 
stationary points, a different choice of coordinates can result in convergence to a 
different final structure. 

The key attribute of a good set of coordinates for geometry optimization is the degree of 
coupling between the individual coordinates. In general, the less coupling the better, as 
variation of one particular coordinate will t hen have minimal impact on the other 
coordinates. Coupling manifests itself primarily as relatively large partial derivative 
terms between different coordinates. For example, a strong harmonic coupling between 
two different coordinates, i and j, results in a large off -diagonal element, Hij, in the 
Hessian (second derivative) matrix. Normally this is the only type of coupling that can be 
directly “observed” during an optimization, as third and higher derivatives are ignored in 
almost all optimization algorithms. 

In the early days of computational quantum chemistry geometry optimizations were 
carried out in Cartesian coordinates. Cartesians are an obvious choice as they can be 
defined for all systems and gradients and second derivatives are calculated directly in 
Cartesian coordinates. Unfortunately, Cartesians normally make a poor coordinate set for 
optimization as they are heavily coupled. Recently, Cartesians have been returning to 
favour because of their very general nature, and because it has been clearly demonstrated 
that if reliable second derivative information is available (i.e., a good starting Hessian) 
and the initial geometry is reasonable, then Cartesians can be as eff icient as any other 
coordinate set for small to medium-sized molecules [15, 16]. Without good Hessian data, 
however, Cartesians are ineff icient, especially for long chain acyclic systems. 

In the 1970s Cartesians were replaced by Z-matrix coordinates. Initially the Z-matrix was 
utili zed simply as a means of geometry input; it is far easier to describe a molecule in 
terms of bond lengths, bond angles and dihedral angles (the natural way a chemist thinks 
of molecular structure) than to develop a suitable set of Cartesian coordinates. It was 
subsequently found that optimization was generally more eff icient in Z-matrix 
coordinates than in Cartesians, especially for acyclic systems. This is not always the case, 
and care must be taken in constructing a suitable Z-matrix. A good general rule is ensure 
that each variable is defined in such a way that changing its value will not change the 
values of any of the other variables. A brief discussion concerning good Z-matrix 
construction strategy is given by Schlegel [17]. 

In 1979 Pulay et al. published a key paper, introducing what were termed natural internal 
coordinates into geometry optimization [8]. These coordinates involve the use of 
individual bond displacements as stretching coordinates, but linear combinations of bond 
angles and torsions as deformational coordinates. Suitable linear combinations of bends 
and torsions (the two are considered separately) are selected using group theoretical 
arguments based on local pseudosymmetry. For example, bond angles around an sp3 
hybridized carbon atom are all approximately tetrahedral, regardless of the groups 
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attached, and idealized tetrahedral symmetry can be used to generate deformational 
coordinates around the central carbon atom. 

The major advantage of natural internal coordinates in geometry optimization is their 
ability to significantly reduce the coupling, both harmonic and anharmonic, between the 
various coordinates. Compared to natural internals, Z-matrix coordinates arbitrarily omit 
some angles and torsions (to prevent redundancy), and this can induce strong anharmonic 
coupling between the coordinates, especially with a poorly constructed Z-matrix. Another 
advantage of the reduced coupling is that successful minimizations can be carried out in 
natural internals with only an approximate (e.g., diagonal) Hessian provided at the 
starting geometry. A good starting Hessian is still needed for a transition state search. 

Despite their clear advantages, natural internals have only become used widely more 
recently. This is because, when used in the early programs, it was necessary for the user 
to define them. This situation changed in 1992 with the development of computational 
algorithms capable of automatically generating natural internals from input Cartesians 
[9]. For minimization, natural internals have become the coordinates of first choice [9, 
16]. 

There are some disadvantages to natural internal coordinates as they are commonly 
constructed and used: 

1. Algorithms for the automatic construction of natural internals are complicated. There 
are a large number of structural possibilities, and to adequately handle even the most 
common of them can take several thousand lines of code. 

2. For the more complex molecular topologies, most assigning algorithms generate 
more natural internal coordinates than are required to characterize all possible 
motions of the system (i.e., the generated coordinate set contains redundancies). 

3. In cases with a very complex molecular topology (e.g., multiply fused rings and cage 
compounds) the assigning algorithm may be unable to generate a suitable set of 
coordinates. 

 

The redundancy problem has recently been addressed in an excellent paper by Pulay and 
Fogarasi [10], who have developed a scheme for carrying out geometry optimization 
directly in the redundant coordinate space. 

Very recently, Baker et al. have developed a set of delocalized internal coordinates [7] 
which eliminate all of the above-mentioned difficulties. Building on some of the ideas in 
the redundant optimization scheme of Pulay and Fogarasi [10], delocalized internals form 
a complete, non-redundant set of coordinates which are as good as, if not superior to, 
natural internals, and which can be generated in a simple and straightforward manner for 
essentially any molecular topology, no matter how complex. 

Consider a set of n internal coordinates q = (ql, q2, ... qn)
t. Displacements ∆q in q are 

related to the corresponding Cartesian displacements ∆X by means of the usual B-matrix 
[18] 
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 ∆ ∆q B X=  (A.12) 

If any of the internal coordinates q are redundant, then the rows of the B-matrix will be 
linearly dependent. 

Delocalized internal coordinates are obtained simply by constructing and diagonalizing 
the matrix G = BBt. Diagonalization of G results in two sets of eigenvectors; a set of m 
(typically 3N-6, where N is the number of atoms) eigenvectors with eigenvalues λ > 0, 
and a set of n-m eigenvectors with eigenvalues λ = 0 (to numerical precision). In this 
way, any redundancies present in the original coordinate set q are isolated (they 
correspond to those eigenvectors with zero eigenvalues). The eigenvalue equation of G 
can thus be written 

 G UR UR( ) ( )=
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where U is the set of non-redundant eigenvectors of G (those with λ > 0) and R is the 
corresponding redundant set. 

The nature of the original set of coordinates q is unimportant, as long as it spans all the 
degrees of freedom of the system under consideration. We include in q, all bond 
stretches, all planar bends and all proper torsions that can be generated based on the 
atomic connectivity. These individual internal coordinates are termed primitives. This 
blanket approach generates far more primitives than are necessary, and the set q contains 
much redundancy. This is of little concern, as solution of (A.13) takes care of all 
redundancies. 

Note that eigenvectors in both U and R will each be linear combinations of potentially all 
the original primitives. Despite this apparent complexity, we take the set of non-
redundant vectors U as our working coordinate set. Internal coordinates so defined are 
much more delocalized than natural internal coordinates (which are combinations of a 
relatively small number of bends or torsions) hence, the term delocalized internal 
coordinates. 

It may appear that because delocalized internals are such a complicated mixing of the 
original primitive internals, they are a poor choice for use in an actual optimization. On 
the contrary, arguments can be made that delocalized internals are, in fact, the "best" 
possible choice, certainly at the starting geometry. The interested reader is referred to the 
original literature for more details [7]. 

The situation for geometry optimization, comparing Cartesian, Z-matrix and delocalized 
internal coordinates, and assuming a "reasonable" starting geometry, is as follows: 

1. For small or very rigid medium-sized systems (up to about 15 atoms), optimizations 
in Cartesian and internal coordinates ("good" Z-matrix or delocalized internals) 
should perform similarly. 
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2. For medium-sized systems (say 15-30 atoms) optimizations in Cartesians should 
perform as well as optimizations in internal coordinates, provided a reliable starting 
Hessian is available. 

3. For large systems (30+ atoms), unless these are very rigid, neither Cartesian nor 
Z-matrix coordinates can compete with delocalized internals, even with good quality 
Hessian information. As the system increases, and with less reliable starting 
geometries, the advantage of delocalized internals can only increase. 

 
There is one particular situation in which Cartesian coordinates may be the best choice. 
Natural internal coordinates (and by extension delocalized internals) show a tendency to 
converge to low energy structures [16]. This is because steps taken in internal coordinate 
space tend to be much larger when translated into Cartesian space, and, as a result, higher 
energy local minima tend to be “jumped over” , especially if there is no reliable Hessian 
information available (which is generally not needed for a successful optimization). 
Consequently, if the user is looking for a local minimum (i.e., a metastable structure) and 
has both a good starting geometry and a decent Hessian, the user should carry out the 
optimization in Cartesian coordinates. 
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A.4  CONSTRAINED OPTIMIZATION 

A.4.1 CARTESIAN COORDINATES 

Constrained optimization refers to the optimization of molecular structures in which 
certain parameters (e.g., bond lengths, bond angles or dihedral angles) are fixed. In 
quantum chemistry calculations, this has traditionally been accomplished using Z-matrix 
coordinates, with the desired parameter set in the Z-matrix and simply omitted from the 
optimization space. In 1992, Baker presented an algorithm for constrained optimization 
directly in Cartesian coordinates [11]. Baker's algorithm used both penalty functions and 
the classical method of Lagrange multipliers [19], and was developed in order to impose 
constraints on a molecule obtained from a graphical model builder as a set of Cartesian 
coordinates. Some improvements widening the range of constraints that could be handled 
were made in 1993 [12]. Q-Chem includes the latest version of this algorithm, which has 
been modified to handle constraints directly in delocalized internal coordinates [13]. 

The essential problem in constrained optimization is to minimize a function of, for 
example, n variables F(x) subject to a series of m constraints of the form Ci(x) = 0, 
i=l ... m. Assuming m < n, then perhaps the best way to proceed (if this were possible in 
practice) would be to use the m constraint equations to eliminate m of the variables, and 
then solve the resulting unconstrained problem in terms of the (n-m) independent 
variables. This is exactly what occurs in a Z-matrix optimization. Such an approach 
cannot be used in Cartesian coordinates as standard distance and angle constraints are 
non-linear functions of the appropriate coordinates. For example a distance constraint 
(between atoms i and j in a molecule) is given in Cartesians by (Rij - R0) = 0, with 

 ( ) ( ) ( )R x x y y z zij i j i j i j= − + − + −
2 2 2

 (A.14) 

and R0 the constrained distance. This obviously cannot be satisfied by elimination. What 
can be eliminated in Cartesians are the individual x, y and z coordinates themselves and 
in this way individual atoms can be totally or partially frozen. 

Internal constraints can be handled in Cartesian coordinates by introducing the 
Lagrangian function 
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which replaces the function F(x) in the unconstrained case. Here, the λi are the so-called 
Lagrange multipliers, one for each constraint Ci(x). Differentiating (A.15) with respect to 
x and λ gives 
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and 
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At a stationary point of the Lagrangian we have ∇L = 0, i.e., all dL/dxj = 0 and all 
dL/dλi = 0. This latter condition means that all Ci(x) = 0 and thus all constraints are 
satisfied. Hence, finding a set of values (x, λ) for which ∇L = 0 will give a possible 
solution to the constrained optimization problem in exactly the same way as finding an x 
for which g = ∇F = 0 gives a solution to the corresponding unconstrained problem. 

The Lagrangian second derivative matrix, the equivalent of the Hessian matrix in an 
unconstrained optimization, is given by 
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where 

 d ( , ) / d d d ( ) / d d d ( ) / d d2 2 2L x x F x x F x xj k j k i j kx x xλ λ= − ∑  (A.17a) 
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 d ( , ) / d d2 0L j ix λ λ λ =  (A.17c) 

Thus in addition to the standard gradient vector and Hessian matrix for the unconstrained 
function F(x), we need both the first and second derivatives (with respect to coordinate 
displacement) of the constraint functions. Once these quantities are available, the 
corresponding Lagrangian gradient, given by (A.16), and Lagrangian second derivative 
matrix, given by (A.17), can be formed, and the optimization step calculated in a similar 
manner to that for a standard unconstrained optimization [11]. 

In the Lagrange multiplier method, the unknown multipliers, λi, are an integral part of the 
parameter set. This means that the optimization space consists of all n variables x plus all 
m Lagrange multipliers λ, one for each constraint. The total dimension of the constrained 
optimization problem, n+m, has thus increased by m compared to the corresponding 
unconstrained case. The Lagrangian Hessian matrix, ∇2L, has m extra modes compared 
to the standard (unconstrained) Hessian matrix, ∇2F. What normally happens is that these 
additional modes are dominated by the constraints (i.e., their largest components 
correspond to the constraint Lagrange multipliers) and they have negative curvature (a 
negative Hessian eigenvalue). This is perhaps not surprising when one realizes that any 
motion in the parameter space that breaks the constraints is likely to lower the energy. 

Compared to a standard unconstrained minimization, where a stationary point is sought at 
which the Hessian matrix has all positive eigenvalues, in the constrained problem we are 
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looking for a stationary point of the Lagrangian function at which the Lagrangian 
Hessian matrix has as many negative eigenvalues as there are constraints (i.e., we are 
looking for an mth order saddle point). For further details and practical applications of 
constrained optimization using Lagrange multipliers in Cartesian coordinates, see [11]. 

Eigenvector following can be implemented in a constrained optimization in a similar way 
to the unconstrained case. Considering a constrained minimization with m constraints, 
then (A.9a) is replaced by 
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and (A.9b) by 
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where now the bi are the eigenvalues of ∇2L, with corresponding eigenvectors ui, and 
Fi = ui

t∇L. Here (A.18a) includes the m constraint modes along which a negative 
Lagrangian Hessian eigenvalue is required, and (A.18b) includes all the other modes. 

Equations (A.18a) and (A.18b) implement eigenvector following for a constrained 
minimization. Constrained transition state searches can be carried out by selecting one 
extra mode to be maximized in addition to the m constraint modes, i.e., by searching for 
a saddle point of the Lagrangian function of order m+l. 

It should be realized that, in the Lagrange multiplier method, the desired constraints are 
only satisfied at convergence, and not necessarily at intermediate geometries. The 
Lagrange multipliers are part of the optimization space; they vary just as any other 
geometrical parameter and, consequently the degree to which the constraints are satisfied 
changes from cycle to cycle, approaching 100% satisfied near convergence. One 
advantage this brings is that, unlike in a standard Z-matrix approach, constraints do not 
have to be satisfied in the starting geometry. 

Imposed constraints can normally be satisfied to very high accuracy, 10-6 or better. 
However, problems can arise for both bond and dihedral angle constraints near 0° and 
180° and, instead of attempting to impose a single constraint, it is better to split angle 
constraints near these limiti ng values into two by using a dummy atom [12], exactly 
analogous to splitt ing a 180° bond angle into two 90° angles in a Z-matrix. 
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Note: Exact 0° and 180° single angle constraints cannot be imposed, as the 
corresponding constraint normals, ∇Ci, are zero, and would result in rows and 
columns of zeros in the Lagrangian Hessian matrix. 

A.4.2 DELOCALIZED INTERNAL COORDINATES 

We do not give further details of the optimization algorithms available in Q-Chem for 
imposing constraints in Cartesian coordinates, as it is far simpler and easier to do this 
directly in delocalized internal coordinates. 

At first sight it does not seem particularly straightforward to impose any constraints at all 
in delocalized internals, given that each coordinate is potentially a linear combination of 
all possible primitives. However, this is deceptive, and in fact all standard constraints can 
be imposed by a relatively simple Schmidt orthogonalization procedure. In this instance 
consider a unit vector with unit component corresponding to the primitive internal 
(stretch, bend or torsion) that one wishes to keep constant. This vector is then projected 
on to the full set, U, of active delocalized coordinates, normalized, and then all n, for 
example, delocalized internals are Schmidt orthogonalized in turn to this normalized, 
projected constraint vector. The last coordinate taken in the active space should drop out 
(since it will be linearly dependent on the other vectors and the constraint vector) leaving 
(n-1) active vectors and one constraint vector. 

In more detail , the procedure is as follows (taken directly from [7]). The initial (usually 
unit) constraint vector C is projected on to the set U of delocalized internal coordinates 
according to 

 C C U Uproj
k k= ∑  (A.19) 

where the summation is over all n active coordinates Uk. The projected vector Cproj is then 
normalized and an (n+l) dimensional vector space V is formed, comprising the 
normalized, projected constraint vector together with all active delocalized coordinates 

 { }V C U= =proj
k k n, ... 1  (A.20) 

This set of vectors is Schmidt orthogonalized according to the standard procedure 

 ~ ~ ~V V V V Vk k k k l l
l
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= −

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−

∑α
1

1

 (A.21) 

where the first vector taken, V1, is Cproj. The αk in (A.21) is a normalization factor. As 
noted above, the last vector taken, Vn+1 = Uk, will drop out, leaving a fully orthonormal 
set of (n-1) active vectors and one constraint vector. 

After the Schmidt orthogonalization the constraint vector will contain all the weight in 
the active space of the primitive to be fixed, which will have a zero component in all of 
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the other (n-1) vectors. The fixed primitive has thus been isolated entirely in the 
constraint vector which can now be removed from the active subspace for the geometry 
optimization step. 

Extension of the above procedure to multiple constraints is straightforward. In addition to 
constraints on individual primitives, it is also possible to impose combinatorial 
constraints. For example, if, instead of a unit vector, one started the constraint procedure 
with a vector in which two components were set to unity, then this would impose a 
constraint in which the sum of the two relevant primitives were always constant. In 
theory any desired linear combination of any primitives could be constrained. 

Note further that imposed constraints are not confined to those primitive internals 
generated from the initial atomic connectivity. If we wish to constrain a distance, angle 
or torsion between atoms that are not formally connected, then all we need to do is add 
that particular coordinate to our primitive set. It can then be isolated and constrained in 
exactly the same way as a formal connectivity constraint. 

Everything discussed thus far regarding the imposition of constraints in delocalized 
internal coordinates has involved isolating each constraint in one vector which is then 
eliminated from the optimization space. This is very similar in effect to a Z-matrix 
optimization, in which constraints are imposed by elimination. This, of course, can only 
be done if the desired constraint is satisfied in the starting geometry. We have already 
seen that the Lagrange multiplier algorithm, used to impose distance, angle and torsion 
constraints in Cartesian coordinates, can be used even when the constraint is not satisfied 
initially. The Lagrange multiplier method can also be used with delocalized internals, and 
its implementation with internal coordinates brings several simplifications and 
advantages. 

In Cartesians, as already noted, standard internal constraints (bond distances, angles and 
torsions) are somewhat complicated non-linear functions of the x, y and z coordinates of 
the atoms involved. A torsion, for example, which involves four atoms, is a function of 
twelve different coordinates. In internals, on the other hand, each constraint is a 
coordinate in its own right and is therefore a simple linear function of just one coordinate 
(itself). 

If we denote a general internal coordinate by R, then the constraint function Ci(R) is a 
function of one coordinate, Ri, and it and its derivatives can be written 

 C R R Ri i i( ) = − 0  (A.22a) 

 d ( ) / d ; d ( ) / dC R R C R Ri i i i i j= =1 0  (A.22b) 

 d ( ) / d d2 0C R R Ri i i j =  (A.22c) 

where in (A.22a), R0 is the desired value of the constrained coordinate, and Ri is its 
current value. From (A.22b) we see that the constraint normals, dCi(R)/dRi, are simply 
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unit vectors and the Lagrangian Hessian matrix, (A.17), can be obtained from the normal 
Hessian matrix by adding m columns (and m rows) of, again, unit vectors. 

A further advantage, in addition to the considerable simpli fication, is the handling of 0° 
and 180° dihedral angle constraints. In Cartesian coordinates it is not possible to formally 
constrain bond angles and torsions to exactly 0° or 180° because the corresponding 
constraint normal is a zero vector. Similar diff iculties do not arise in internal coordinates, 
at least for torsions, because the constraint normals are unit vectors regardless of the 
value of the constraint; thus 0° and 180° dihedral angle constraints can be imposed just as 
easily as any other value. 180° bond angles still cause diff iculties, but near-linear 
arrangements of atoms require special treatment even in unconstrained optimizations; a 
typical solution involves replacing a near 180° bond angle by two special li near co-planar 
and perpendicular bends [20], and modifying the torsions where necessary. A linear 
arrangement can be enforced by constraining the co-planar and perpendicular bends. 

One other advantage over Cartesians is that in internals the constraint coordinate can be 
eliminated once the constraint is satisfied to the desired accuracy (the default tolerance is 
10-6 in atomic units: bohrs and radians). This is not possible in Cartesians due to the 
functional form of the constraint. In Cartesians, therefore, the Lagrange multiplier 
algorithm must be used throughout the entire optimization, whereas in delocalized 
internal coordinates it need only be used until all desired constraints are satisfied; as 
constraints become satisfied they can simply be eliminated from the optimization space 
and once all constraint coordinates have been eliminated standard algorithms can be used 
in the space of the remaining unconstrained coordinates. Normally, unless the starting 
geometry is particularly poor in this regard, constraints are satisfied fairly early on in the 
optimization (and at more or less the same time for multiple constraints), and Lagrange 
multipliers only need to be used in the first half-dozen or so cycles of a constrained 
optimization in internal coordinates. 

A.5 GDIIS 

Direct inversion in the iterative subspace (DIIS) was originally developed by Pulay for 
accelerating SCF convergence [6]. Subsequently, Csaszar and Pulay used a similar 
scheme for geometry optimization, which they termed GDIIS [5]. The method is 
somewhat different from the usual quasi-Newton type approach and is included in 
OPTIMIZE as an alternative to the EF algorithm. Tests indicate that its performance is 
similar to EF, at least for small systems; however there is rarely an advantage in using 
GDIIS in preference to EF. 

In GDIIS, geometries (xi) generated in previous optimization cycles are linearly 
combined to find the "best" geometry on the current cycle 

 x xn i i
i

m

c=
=
∑

1

 (A.23) 

where the problem is to find the best values for the coeff icients ci. 
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If we express each geometry, xi, by its deviation from the sought-after final geometry, xf, 
i.e., xf = xi + ei, where ei is an error vector, then it is obvious that if the conditions 

 r e= ∑ci i  (A.24) 

and 

 ci∑ = 1 (A.25) 

are satisfied, then the relation 

 ci i fx x∑ =  (A.26) 

also holds. 

The true error vectors ei are, of course, unknown. However, in the case of a nearly 
quadratic energy function they can be approximated by 

 e H gi i= − −1  (A.27) 

where gi is the gradient vector corresponding to the geometry xi and H is an 
approximation to the Hessian matrix. Minimization of the norm of the residuum vector r, 
(A.24), together with the constraint equation, (A.25), leads to a system of (m+l) linear 
equations 
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where Bij i j= e e  is the scalar product of the error vectors ei and ej, and λ is a Lagrange 

multiplier. 

The coeff icients ci determined from (A.28) are used to calculate an intermediate 
interpolated geometry 

 x xm i ic+ = ∑1
'  (A.29) 

and its corresponding interpolated gradient 

 g gm i ic+ = ∑1
'  (A.30) 

A new, independent geometry is generated from the interpolated geometry and gradient 
according to 
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 x x H gm m m+ +
−

+= −1 1
1

1
' '  (A.31) 

Note: Convergence is theoretically guaranteed regardless of the quality of the Hessian 
matrix (as long as it is positive definite), and the original GDIIS algorithm used 
a static Hessian (i.e. the original starting Hessian, often a simple unit matrix, 
remained unchanged during the entire optimization). However, updating the 
Hessian at each cycle generally results in more rapid convergence, and this is the 
default in OPTIMIZE. 

Other modifications to the original method include limiti ng the number of previous 
geometries used in (A.23) and, subsequently, by neglecting earlier geometries, and 
eliminating any geometries more than a certain distance (default 0.3 au) from the current 
geometry. 
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APPENDIX B AOINTS 

 

B.1 INTRODUCTION 

Within the Q-Chem program, an Atomic Orbital INTegralS (AOINTS) package has been 
developed which, while relatively invisible to the user, is one of the keys to the overall 
speed and eff iciency of the Q-Chem program. 

“Ever since Boys’ introduction of Gaussian basis sets to quantum chemistry in 
1950, the calculation and handling of the notorious two-electron-repulsion 
integrals (ERIs) over Gaussian functions has been an important avenue of 
research for practicing computational chemists. Indeed, the emergence of 
practically useful computer programs ... has been fuelled in no small part by the 
development of sophisticated algorithms to compute the very large number of 
ERIs that are involved in calculations on molecular systems of even modest size.” 
[1]. 

The ERI engine of any competitive quantum chemistry software package will be one of 
the most complicated aspects of the package as whole. Coupled with the importance of 
such an engine’s eff iciency, a useful yardstick of a program’s anticipated performance 
can be quickly measured by considering the components of its ERI engine. In recent 
times, developers at Q-Chem, Inc. have made significant contributions to the 
advancement of ERI algorithm technology (for example see [1-10]), and it is not 
surprising that Q-Chem’s AOINTS package is considered the most advanced of its kind. 

B.2 HISTORICAL PERSPECTIVE 

Prior to the 1950’s, the most diff icult step in the systematic application of Schrödinger 
wave mechanics to chemistry was the calculation of the notorious two-electron integrals 
that measure the repulsion between electrons. Boys [11] showed that this step can be 
made easier (although still tim e consuming) if Gaussian, rather than Slater, orbitals are 
used in the basis set. Following the landmark paper of computational chemistry [12] 
(again due to Boys) programs were constructed that could calculate all the ERIs that arise 
in the treatment of a general polyatomic molecule with s and p orbitals. However, the 
programs were painfully slow and could only be applied to the smallest of molecular 
systems. 

In 1969, Pople constructed a breakthrough ERI algorithm, a hundred time faster than its 
predecessors. The algorithm remains the fastest available for its associated integral 
classes and is now referred to as the Pople-Hehre axis-switch method [13]. 

Over the two decades following Pople’s initial development, an enormous amount of 
research effort into the construction of ERIs was documented, which built on Pople’s 
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original success. Essentially, the advances of the newer algorithms could be identified as 
either better coping with angular momentum (L) or, contraction (K); each new method 
increasing the speed and application of quantum mechanics to solving real chemical 
problems. 

By 1990, another barrier had been reached. The contemporary programs had become 
sophisticated and both academia and industry had begun to recognize and use the power 
of ab initio quantum chemistry, but the software was struggling with "dusty deck 
syndrome" and it had become increasingly diff icult for it to keep up with the rapid 
advances in hardware development. Vector processors, parallel architectures and the 
advent of the graphical user interface were all demanding radically different approaches 
to programming and it had become clear that a fresh start, with a clean slate, was both 
inevitable and desirable. Furthermore, the integral bottleneck had re-emerged in a new 
guise and the standard programs were now hitting the N2 wall . Irrespective of the speed at 
which ERIs could be computed, the unforgiving fact remained that the number of ERIs 
required scaled quadratically with the size of the system. 

The Q-Chem project was established to tackle this problem and to seek new methods that 
circumvent the N2 wall . Fundamentally new approaches to integral theory were sought 
and the ongoing advances that have resulted [14-18] have now placed Q-Chem firmly at 
the vanguard of the field. It should be emphasized, however, that the O(N) methods that 
we have developed still require short-range ERIs to treat interactions between nearby 
electrons, thus the importance of contemporary ERI code remains. 

The chronological development and evolution of integral methods can be summarised by 
considering a timeline showing the years in which important new algorithms were first 
introduced. These are best discussed in terms of the type of ERI or matrix elements that 
the algorithm can compute eff iciently. 

1950 Boys   [11]  ERIs with low L and low K 
1969 Pople   [13]  ERIs with low L and high K 
1976 Dupuis   [19]  Integrals with any L and low K 
1978 McMurchie  [20]  Integrals with any L and low K 
1982 Almlöf   [21]  Introduction of the direct SCF approach 
1986 Obara   [22]  Integrals with any L and low K 
1988 Head-Gordon  [8]  Integrals with any L and low K 
1991 Gill    [1, 6]  Integrals with any L and any K 
1994 White   [14]  J matrix in linear work 
1996 Schwegler  [18, 24] HF exchange matrix in linear work 
1997 Challacombe  [17]  Fock matrix in linear work 
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B.3 AOINTS: CALCULATING ERIS WITH Q-CHEM 

The area of molecular integrals with respect to Gaussian basis functions has recently been 
reviewed [2] and the user is referred to this review for deeper discussions and further 
references to the general area. The purpose of this short account is to present the basic 
approach, and in particular, the implementation of ERI algorithms and aspects of interest 
to the user in the AOINTS package which underlies the Q-Chem program. 

We begin by observing that all of the integrals encountered in an ab initio calculation, of 
which overlap, kinetic energy, multipole moment, internuclear repulsion, nuclear-
electron attraction and interelectron repulsion are the best known, can be written in the 
general form 

 ( )ab cd r r r r r ra 1 b 1 c 2 d 2 1 2| ( ) ( ) ( ) ( ) ( ) d d= ∫∫φ φ θ φ φr12  (B.1) 

where the basis functions are contracted Gaussian’s (CGTF) 
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and the operator θ is a two-electron operator. Of the two-electron operators (Coulomb, 
CASE, anti-Coulomb and delta-function) used in the Q-Chem program, the most 
significant is the Coulomb, which leads us to the ERIs. 

An ERI is the classical Coulomb interaction (θ(x) = 1/x in B.1) between two charge 
distributions referred to as bras (ab| and kets |cd). 

B.3.1 SHELL-PAIR DATA 

It is common to characterise a bra, a ket and a bra-ket by their degree of contraction and 
angular momentum. In general, it is more convenient to compile data for shell -pairs 
rather than basis-function-pairs. A shell i s defined as that sharing common exponents and 
centres. For example, in the case of a number of Pople derived basis sets, four basis 
functions, encompassing a range of angular momentum types (i.e., s, px, py, pz) on the 
same atomic centre sharing the same exponents constitute a single shell . 

The shell -pair data set is central to the success of any modern integral program for three 
main reasons. First, in the formation of shell -pairs, all pairs of shells in the basis set are 
considered and categorized as either significant or negligible. A shell -pair is considered 
negligible if the shells involved are so far apart, relative to their diffuseness, that their 
overlap is negligible. Given the rate of decay of Gaussian basis functions, it is not 
surprising that most of the shell -pairs in a large molecule are negligible, that is, the 
number of significant shell -pairs increases linearly with the size of the molecule. Second, 
a number of useful intermediates which are frequently required within ERI algorithms 
should be computed once in shell -pair formation and stored as part of the shell -pair 
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information, particularly those which require costly divisions. This prevents re-evaluating 
simple quantities. Third, it is useful to sort the shell -pair information by type (i.e., 
angular momentum and degree of contraction). The reasons for this are discussed below. 

Q-Chem’s shell -pair formation offers the option of two basic integral shell -pair cutoff 
criteria; one based on the integral threshold ($rem variable THRESH) and the other 
relative to machine precision. 

Intelli gent construction of shell -pair data scales linearly with the size of the basis set, 
requires a relative amount of CPU time which is almost entirely negligible for large 
direct SCF calculations, and for small j obs, constitutes approximately 10% of the job 
time. 

B.3.2 SHELL-QUARTETS AND INTEGRAL CLASSES 

Given a sorted list of shell -pair data, it is possible to construct all potentially important 
shell -quartets by pairing of the shell -pairs with one another. Because the shell -pairs have 
been sorted, it is possible to deal with batches of integrals of the same type or class (e.g., 
(ss|ss), (sp|sp), (dd|dd), etc.) where an integral class is characterized by both angular 
momentum (L) and degree of contraction (K). Such an approach is advantageous for 
vector processors and for semi-direct integral algorithms where the most expensive (high 
K or L) integral classes can be computed once, stored in memory (or disk) and only less 
expensive classes rebuilt on each iteration. 

While the shell -pairs may have been carefully screened, it is possible for a pair of 
significant shell -pairs to form a shell -quartet which need not be computed directly. Three 
cases are: 

1. The quartet is equivalent, by point group symmetry, to another quartet already 
treated. 

2. The quartet can be ignored on the basis of cheaply computed ERI bounds [7] on the 
largest quartet bra-ket. 

3. On the basis of an incremental Fock matrix build, the largest density matrix element 
which will multiply any of the bra-kets associated with the quartet may be negligibly 
small . 

 
Note: Significance and negligibilit y is always based on the level of integral threshold 

set by the $rem variable THRESH. 
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B.3.3 FUNDAMENTAL ERI 

The fundamental ERI [2] and the basis of all ERI algorithms is usually represented 
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which can be reduced to a one-dimensional integral of the form 
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and can be efficiently computed using a modified Chebyshev interpolation scheme [5]. 
Equation (B.4) can also be adapted for the general-case [0](m) integrals required for most 
calculations. Following the fundamental ERI, building up to the full bra-ket ERI (or 
intermediary matrix elements, see later) are the problems of angular momentum and 
contraction. 

Note: Square brackets denote primitive integrals and parentheses fully contracted. 

B.3.4 ANGULAR MOMENTUM PROBLEM 

The fundamental integral is essentially an integral without angular momentum (i.e., it is 
an integral of the type [ss|ss]). Angular momentum, usually depicted by L, has been 
problematic for efficient ERI formation, evident in the timeline in section B.2. Initially, 
angular momentum was calculated by taking derivatives of the fundamental ERI with 
respect to one of the Cartesian coordinates of the nuclear centre. This is an extremely 
inefficient route, but it works and was appropriate in the early development of ERI 
methods. Recursion relations [22, 25] and the newly developed tensor equations [3] are 
the basis for the modern approaches. 
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B.3.5 CONTRACTION PROBLEM 

The contraction problem may be described by considering a general contracted ERI of s-
type functions derived from the STO-3G basis set. Each basis function has degree of 
contraction K = 3. Thus, the ERI may be written 
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and requires 81 primitive integrals for the single ERI. The problem escalates dramatically 
for more highly contracted sets (STO-6G, 6-311G) and has been the motivation for the 
development of techniques for shell -pair modelli ng [26] in which a second shell -pair is 
constructed with fewer primitives that the first, but introduces no extra error relative to 
the integral threshold sought. 

The Pople-Hehre axis-switch method [13] is excellent for high contraction low angular 
momentum integral classes. 

B.3.6 QUADRATIC SCALING 

The success of quantitative modern quantum chemistry, relative to its primitive, 
qualitative beginnings, can be traced to two sources: better algorithms and better 
computers. While the two technologies continue to improve rapidly, efforts are heavily 
thwarted by the fact that the total number of ERIs increases quadratically with the size of 
the molecular system. Even large increases in ERI algorithm eff iciency yield only 
moderate increases in applicabilit y, hindering the more widespread application of ab 
initio methods to areas of, perhaps, biochemical significance where semi-empirical 
techniques [27, 28] have already proven so valuable. 

Thus, the elimination of quadratic scaling algorithms has been the theme of many 
research efforts in quantum chemistry throughout the 1990’s and has seen the 
construction of many alternative algorithms to alleviate the problem. Johnson was the 
first to implement DFT exchange/correlation functionals whose computational cost 
scaled linearly with system size [23]. This paved the way for the most significant 
breakthrough in the area with the linear scaling CFMM algorithm [14] leading to linear 
scaling DFT calculations [29]. Further breakthroughs have been made with traditional 
theory in the form of the QCTC [17, 30, 31]and ONX [18, 24] algorithms, whilst more 
radical approaches [15, 16, 32] may lead to entirely new approaches to ab initio 
calculations. Investigations into the quadratic Coulomb problem has not only yielded 
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linear scaling algorithms, but is also providing large insights into the significance of 
many molecular energy components. 

Linear scaling Coulomb and SCF exchange/correlation algorithms are not the end of the 
story as the O(N3) diagonalization step has been rate limiti ng in semi-empirical 
techniques and, been predicted [33] to become rate limiti ng in ab initio approaches in the 
medium term. However, divide-and-conquer techniques [34-37] and the recently 
developed quadratically convergent SCF algorithm [38] show great promise for reducing 
this problem. 

B.3.7 ALGORITHM SELECTION 

No single ERI algorithm is available to eff iciently handle all i ntegral classes; rather, each 
tends to have specific integral classes where the specific algorithm out-performs the 
alternatives. The PRISM algorithm [6] is an intricate collection of pathways and steps in 
which the path chosen is that which is the most eff icient for a given class. It appears that 
the most appropriate path for a given integral class depends on the relative position of the 
contraction step (lowly contracted bra-kets prefer late contraction, highly contracted bra-
kets are most eff icient with early contraction steps). 

Careful studies have provided FLOP counts which are the current basis of integral 
algorithm selection, although care must be taken to ensure that algorithms are not rate 
limited by MOPs [4]. Future algorithm selection criteria will t ake greater account of 
memory, disk, chip architecture, cache size, vectorization and parallelization 
characteristics of the hardware, many of which are already exist within Q-Chem. 

B.3.8 USER CONTROLLABLE VARIABLES 

AOINTS has been optimally constructed so that the fastest integral algorithm for ERI 
calculation is chosen for the given integral class and batch. Thus, the user has not been 
provided with the necessary variables for over-riding the program’s selection process. 
The user is, however, able to control the accuracy of the cutoff used during shell -pair 
formation (METECO) and the integral threshold (THRESH). In addition, the user can 
force the use of the direct SCF algorithm (DIRECT_SCF) and increase the default size of 
the integrals storage buffer (INCORE_INTS_BUFFER). 

Currently, some of Q-Chem’s linear scaling algorithms, such as QCTC and ONX 
algorithms, require the user to specify their use. It is anticipated that further research 
developments will l ead to the identification of situations in which these, or combinations 
of these and other algorithms, will be selected automatically by Q-Chem in much the 
same way that PRISM algorithms choose the most eff icient pathway for given integral 
classes. 
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APPENDIX C $REM VARIABLE REFERENCE 

 

C.1 INPUT DECK FORMAT 

The general format of the $rem input for Q-Chem text input files is simply as follows: 

$rem 
rem_variable rem_option [comment] 
rem_variable rem_option [comment] 
$end 
 

This input is not case sensitive. 

The following sections contain the names and options of available $rem variables for 
users. The format for describing each $rem variable is as follows 

REM_VARIABLE 
 Gives a short description of what the variable controls 
 VARIABLE: 
  Defines the variable as either INTEGER, LOGICAL or STRING 
 DEFAULT: 
  Describes Q-Chem’s internal default, if any exist 
 OPTIONS: 
  Lists options available for the user 
 RECOMMENDATION: 
  Gives a quick recommendation 
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C.2 THEORETICAL CHEMICAL MODEL 

BASIS 
 Defines the basis sets to be used (unless ECP is specified) 
 VARIABLE: 
  STRING 
 DEFAULT: 
  No default basis set 
 OPTIONS: 
  General, Gen  User defined. ($basis keyword required) 
  Symbol  Use standard basis sets as per Chapter 7 
 RECOMMENDATIONS: 
  Consult literature and reviews to aid your selection 
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CORRELATION 
 Specifies the correlation level of theory, either DFT or wavefunction-based. 
 VARIABLE: 
  STRING 
 DEFAULT: 
  None   No Correlation 
 OPTIONS: 
  None   No Correlation 
 
  VWN   Vosko-Wilk-Nusair parameterization #5 
  LYP   Lee-Yang-Parr (LYP) 
  PW91, PW  GGA91 (Perdew) 
  LYP(EDF1)  LYP(EDF1) parameterization 
  Perdew86, P86 Perdew 1986 
  PZ81, PZ  Perdew-Zunger 1981 
  Wigner   Wigner 
 
  MP2    
  Local_MP2  local MP2 calculations (TRIM and DIM models) 
  CIS(D)   MP2-level correction to CIS for excited states 
  MP3 
  MP4SDQ 
  MP4 
  CCD 
  CCD(2) 
  CCSD 
  CCSD(T) 
  CCSD(2) 
  QCISD 
  QCISD(T) 
  OD 
  OD(T) 
  OD(2) 
  VOD 
  VOD(2) 
  QCCD 
  VQCCD 
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ECP 
 Defines the effective core potential and associated basis set to be used 
 VARIABLE: 
  STRING 
 DEFAULT: 
  No pseudopotential 
 OPTIONS: 
  General, Gen  User defined. ($ecp keyword required) 
  Symbol  Use standard pseudopotentials as per Chapter 8 
 RECOMMENDATIONS: 

Pseudopotentials are recommended for first row transition metals and 
heavier elements.  Consult Ch. 8 and reviews for more details. 

 
EXCHANGE 
 Specifies the exchange level of theory 
 VARIABLE: 
  STRING 
 DEFAULT: 
  HF for wavefunction correlation methods.  Otherwise none. 
 OPTIONS: 
  HF exact Hartree-Fock 
  Slater, S Slater 
  Becke, B  Becke 
  Gill96, Gill Gill 1996 
  GG99 Gilbert and Gill, 1999 
  Becke(EDF1), B(EDF1) Becke (EDF1) 
  PW91, PW Perdew 
  B3PW91, Becke3PW91, B3P B3PW91 hybrid 
  B3LYP, Becke3LYP B3LYP 
  B3LYP5 original B3LYP (using VWN5) 
  EDF1 EDF1 
  General, Gen User defined combination of K, X and C (refer DFT 

section, Chapter 4) 
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JOBTYPE 
 Specifies the type of calculation 
 VARIABLE: 
  STRING 
 DEFAULT: 
  SP  Single point energy 
 OPTIONS: 
  SP  Single point energy 
  FORCE Analytical Force calculation 
  OPT   Geometry Minimization 
  TS  Transition Structure Search 
  FREQ  Frequency Calculation 
 RECOMMENDATION: 
  Defaults to single point 
 
PURECART 
 Controls the use of either pure or Cartesian basis functions for general basis sets 

(ignored for standard basis sets) 
 DEFAULT: 
  None 
 OPTIONS: 
  gfd Use 1 for pure and a 2 for Cartesian for each angular momentum 

type. Must be defined for user supplied basis sets 
 
UNRESTRICTED 
 Controls the use of restricted or unrestricted orbitals 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE (Restricted) Closed-shell systems 
  TRUE  (Unrestricted) Open-shell systems 
 OPTIONS: 
  True  Unrestricted orbitals 
  False  Restricted open-shell HF (ROHF) 
 RECOMMENDATION: 
  Use default unless ROHF is desired 
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C.3 GENERAL 

INCORE_INTS_BUFFER 
 Controls the size of in-core integral storage buffer 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  2,000,000 words (1 word = 8 bytes). 
 OPTIONS: 
  User defined size; hardware dependent 
 
MEMORY 
 Sets the “Fortran” memory for individual program modules. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  2,000,000 (2 MW) 
 OPTIONS: 
  User-defined number of words 
 RECOMMENDATIONS: 
  MP2 energy/gradient calculations have special requirements (see Ch. 5) 
 
MEMORY_TOTAL 
 Sets the total memory available to Q-Chem 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  Unlimited (1,000 MW) 
 OPTIONS: 
  User-defined number of words 
 RECOMMENDATION: 
  Use default 
 
METECO 
 Sets the threshold criteria for discarding shell -pairs 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  2 Discard shell -pairs below 10-THRESH. 
 OPTIONS: 
  1 Discard shell -pairs fours orders of magnitude below machine 

precision 
  2 Discard shell -pairs below 10-THRESH 
 RECOMMENDATION: 
  Use default 
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SYMMETRY 
 Controls the use of efficiency through the use of point group symmetry 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  TRUE  Use symmetry when available 
 OPTIONS: 
  TRUE  Use symmetry when available 
  FALSE Do not use symmetry 
 RECOMMENDATION: 
  Use default 
 
THRESH 
 Cutoff for neglect of two electron integrals. 10-THRESH (THRESH ≤ 12) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  8 for single point energies 
  10 for optimizations and frequency calculations 
 OPTIONS: 
  User-defined 
 RECOMMENDATION: 
  Should be at least 8, and 2 or 3 greater than SCF_CONVERGENCE 
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C.4 SCF GROUND STATE CALCULATIONS 

See also BASIS, CORRELATION, EXCHANGE and JOBTYPE 
 
BASIS2 
 Sets the small basis set to use in basis set projection 
 VARIABLE: 
  STRING 
 DEFAULT: 
  No second basis set default 
 OPTIONS: 
  Symbol  Use standard basis sets as per Chapter 7 
 RECOMMENDATIONS: 
  BASIS2 should be smaller than BASIS 
 
DIIS_SUBSPACE_SIZE 
 Controls the size of the DIIS subspace during the SCF 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  15 
 OPTIONS: 
  User-defined 
 
DIRECT_SCF 
 Controls direct SCF 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  Determined by program 
 OPTIONS: 
  TRUE  Forces direct SCF 
  FALSE  Do not use direct SCF 
 RECOMMENDATION: 
  Use default. DIRECT_SCF switches off in-core integrals 
 
EPAO_ITERATE 
 Controls iterations for EPAO calculations (see PAO_METHOD) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 

0 (FALSE) Use uniterated EPAO’s based on atomic blocks of SPS. 
 OPTIONS: 

0 (FALSE) Use uniterated EPAO’s based on atomic blocks of SPS. 
  n  Optimize the EPAO’s for up to n iterations. 
 RECOMMENDATION: 
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Use default. For molecules that are not too large, one can test the 
sensitivity of the results to the type of minimal functions by the use of 
optimised EPAO’s, in which case a value of n=500 is reasonable. 

 
EPAO_WEIGHTS 
 Controls algorithm and weights for EPAO calculations (see PAO_METHOD) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  115  Standard weights, use 1st  and 2nd order optimisation 
 OPTIONS: 
  15  Standard weights, with 1st order optimisation only. 
 RECOMMENDATION: 
  Use default, unless convergence failure is encountered. 
 
FAST_XC 
 Controls direct variable thresholds to accelerate exchange correlation (XC) in 

DFT 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE 
 OPTIONS: 
  TRUE  FAST_XC is on. 
  FALSE  Do not use FAST_XC 
 RECOMMENDATION: 
  Caution: FAST_XC occasionally causes SCF calculations to diverge 
 
INTEGRAL_2E_OPR 
 Determines the two-electron operator 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  -2  Coulomb Operator 
 OPTIONS: 
  -1  Apply the CASE approximation 
  -2  Coulomb Operator 
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MAX_DIIS_CYCLES 
 The maximum number of DIIS iterations before switching to (geometric) direct 

minimization when SCF_ALGORITHM is DIIS_GDM or DIIS_DM.  See also 
THRESH_DIIS_SWITCH. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  50   
 OPTIONS: 

1 Only a single Roothaan step before switching to (G)DM 
n  n DIIS iterations before switching to (G)DM. 

 
MAX_SCF_CYCLES 
 Controls the maximum number of SCF iterations permitted 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  50 
 OPTIONS: 
  User-defined 
 
MOM_ECONOMIZE: 
 Determines if any computational savings are to be used with MOM 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  4 
 OPTIONS: 
  1   Include everything 
  2   Freeze core electrons 
  3   Only use orbitals within 1Eh of the HOMO 
  4   Combined frozen core and window 
 RECOMMENDATION: 
  Use default 
 
MOM_START 
 Determines when MOM is switched on to stabilize DIIS iterations 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 (FALSE) 
 OPTIONS: 
  0 (FALSE)  MOM is not used 
  n   MOM begins on cycle n 
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OMEGA 
 Degree of attenuation of Coulomb operator (see INTEGRAL_2E_OPR) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  No default 
 OPTIONS: 
  n  ω = n/1000 
 
PAO_ALGORITHM 
 Algorithm used to optimise polarized atomic orbitals (see PAO_METHOD) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0  use eff icient (and riskier) strategy to converge PAO’s 
 OPTIONS: 
  1  use conservative (and slower) strategy to converge PAO’s 
 
PAO_METHOD 
 Controls evaluation of polarized atomic orbitals (PAO’s) 
 VARIABLE: 
  STRING 
 DEFAULT: 
  EPAO For local MP2 calculations 
  Otherwise no default  
 OPTIONS: 
  PAO Perform PAO-SCF instead of conventional SCF 
  EPAO Obtain EPAO’s after a conventional SCF. 
 
PSEUDO_CANONICAL 

When SCF_ALGORITHM = DM, this controls the way the initial step, and steps 
after subspace resets are taken. 

 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE  use Roothaan steps when (re)initializing 
 OPTIONS: 
  TRUE   use a steepest descent step when (re)initializing 
 RECOMMENDATION 

The default (FALSE) is usually more eff icient, but choosing TRUE 
sometimes avoids problems with orbital reordering. 

 



C-12 Appendix C: $rem Variable Reference 

SCF_ALGORITHM 
 Algorithm used for converging the SCF 
 VARIABLE: 
  STRING 
 DEFAULT: 
  DIIS Pulay DIIS 
 OPTIONS: 
  DIIS Pulay DIIS 
  DM Direct minimizer 
  DIIS_DM Uses DIIS initially, switching to direct minimizer 

for later iterations (See THRESH_DIIS_SWITCH, 
MAX_DIIS_CYCLES) 

  DIIS_GDM Use DIIS and then later switch to geometric direct 
minimization (See THRESH_DIIS_SWITCH, 
MAX_DIIS_CYCLES) 

  GDM Geometric Direct Minimization 
  ROOTHAAN Roothaan repeated diagonalization 
 RECOMMENDATION: 
  Use DIIS unless wanting ROHF, in which case direct minimization must 

be used.  If DIIS fails, DIIS_GDM is the recommended fall-back option. 
 
 
SCF_CONVERGENCE 
 SCF is considered converged when the wavefunction error is less that 

10-SCF_CONVERGENCE.  Adjust the value of THRESH at the same time. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  5  For single point energy calculations 
  8  for geometry optimizations and vibrational analysis 
 OPTIONS: 
  User-defined 
 RECOMMENDATION: 

Tighter criteria for geometry optimization and vibration analysis.  Larger 
values provide more significant figures, at greater computational cost. 
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SCF_GUESS 
 Specifies the initial guess procedure to use for the SCF 
 VARIABLE: 
  STRING 
 DEFAULT: 
  SAD  Superposition of atomic density (available only with 

standard basis sets) 
  GWH  For ROHF where a set of orbitals are required. 
 OPTIONS: 
  CORE  Diagonalize core Hamiltonian 
  SAD  Superposition of atomic density 
  GWH  Apply generalized Wolfsberg-Helmholtz approximation 
  READ  Read previous MOs from disk 
 RECOMMENDATION: 
  SAD guess for standard basis sets. For general basis sets, it is best to use 

the BASIS2 REM.  Alternatively, try the GWH or core Hamiltonian guess.  
For ROHF it can be useful to READ guesses from an SCF calculation on 
the corresponding cation or anion. 

 
SCF_GUESS_ALWAYS 
 Switch to force the regeneration of a new initial guess for each series of SCF 

iterations (for use in geometry optimization) 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False Do not generate a new guess for each series of SCF 

iterations in an optimization; use MOs from the previous 
SCF calculation for the guess, if available 

 OPTIONS: 
  False Do not generate a new guess for each series of SCF 

iterations in an optimization; use MOs from the previous 
SCF calculation for the guess, if available 

  True Generate a new guess for each series of SCF iterations in a 
geometry optimization 
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SCF_GUESS_MIX 
 Controls mixing of LUMO and HOMO to break symmetry in the initial guess.  

For unrestricted jobs, the mixing is performed only for the alpha orbitals. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 (FALSE) Do not mix HOMO and LUMO in SCF guess 
 OPTIONS: 
  0 (FALSE) Do not mix HOMO and LUMO in SCF guess 
  1 (TRUE) Add 10% of LUMO to HOMO to break symmetry 
  n Add n × 10% of LUMO to HOMO (0 < n < 10) 
 RECOMMENDATION: 

When performing unrestricted calculations on molecules with an even 
number of electrons, it is often necessary to break alpha-beta symmetry in 
the initial guess with this option, or by specifying input for $occupied. 

 
THRESH_DIIS_SWITCH 
 The threshold for switching between DIIS extrapolation and direct minimization 

of the SCF energy is 10-THRESH_DIIS_SWITCH when SCF_ALGORITHM is DIIS_GDM or 
DIIS_DM.  See also MAX_DIIS_CYCLES. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  2   
 OPTIONS: 
  User-defined 
 
XC_GRID 
 Specifies the type of grid to use for DFT calculations. 
 DEFAULT: 
  1 SG-1 
 OPTIONS: 
  1 SG-1 
  2 Low Quality 
  mn The first six integers correspond to m radial points and the second 

six integers correspond to n angular points where possible numbers 
of Lebedev angular points are listed in Chapter 4 

  -mn The first six integers correspond to m radial points and the second 
six integers correspond to n angular points where the number of 
Gauss-Legendre angular points n = 2Nθ

2 
 RECOMMENDATION: 
  SG-1 
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C.5 LARGE MOLECULES 

See also JOBTYPE, BASIS, EXCHANGE and CORRELATION 
 
CFMM_ORDER 
 Controls the order of multipole expansions in CFMM calculation 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  15  For single point SCF accuracy 
  25  For tighter convergence 
 OPTIONS: 
  n  Use multipole expansions of order n 
 RECOMMENDATION: 
  Use default 
 
GRAIN 
 Controls the number of lowest-level boxes in one-dimension for CFMM 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  -1  Program decides best value, turning CFMM on when useful 
 OPTIONS: 
  -1  Program decides best value, turning CFMM on when useful 
  1  Do not use CFMM 
  n>7  Use CFMM with n lowest-level boxes in one-dimension 
 RECOMMENDATION: 
  This is an expert option; either use the default, or use a value of 1 if 

CFMM is not desired 
 
INCFOCK 
 Iteration number after which the incremental Fock matrix algorithm is initiated 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1 Start INCFOCK after iteration number 1 
 OPTIONS: 
  User-defined (0 switches INCFOCK off) 
 RECOMMENDATIONS: 
   May be necessary to allow several iterations before switching on 

INCFOCK 
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LIN_K 
 Controls whether linear scaling evaluation of exact exchange (LinK) is used. 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  Program chooses, switching on LinK whenever CFMM is used. 
 OPTIONS: 
  TRUE  Use LinK 
  FALSE  Do not use LinK  
 RECOMMENDATION: 
  Use for HF and hybrid DFT calculations with large numbers of atoms 
 
VARTHRESH 
 Controls the temporary integral cutoff threshold. 
 tmp_thresh = 10-VARTHRESH x DIIS_error 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  3 
 OPTIONS: 
  User-defined threshold 
 RECOMMENDATIONS: 
  3 has found to be a practical level 
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C.6 CORRELATED METHODS 

See also JOBTYPE, BASIS, EXCHANGE and CORRELATION.  Options beginning with 
“CC_” are for the coupled cluster module. 
 
CC_BLCK_TNSR_BUFFSIZE  
  Specifies maximum size, MB, of buffers for in-core storage of block-tensors.  
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  80 MB 
 RECOMMENDATION: 

Larger values can give better i/o performance, and are recommended for 
systems with large memory (add to your .qchemrc file) 

 
CC_CANONIZE 

Whether to semi-canonicalize orbitals at the start of the calculation (i.e. Fock 
matrix is diagonalized in each orbital subspace) 
VARIABLE: 

LOGICAL 
DEFAULT: 

TRUE 
OPTIONS: 

TRUE/FALSE 
 RECOMMENDATION: 

Should not normally have to be altered. 
 
CC_CANONIZE_FINAL 
 Whether to semi-canonicalize orbitals at the end of the ground state calculation. 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE unless required  
 OPTIONS: 
  TRUE/FALSE 
 RECOMMENDATION: 

Should not normally have to be altered. 
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CC_CANONIZE_FREQ 
The orbitals will be semi-canonicalized every n theta resets.  The thetas (orbital 
rotation angles) are reset every CC_RESET_THETA iterations.  The counting of 
iterations differs for active space (VOD, VQCCD) calculations, where the orbitals 
are always canonicalized at the first theta-reset. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

50 
RECOMMENDATION: 

Smaller values can be tried in cases that do not converge. 
 
CC_CONVERGENCE 

Overall convergence criterion for the coupled cluster codes.  This is designed to 
ensure at least n significant digits in the calculated energy, and automatically sets 
the other convergence-related variables (CC_E_CONV, CC_T_CONV, 
CC_THETA_CONV, CC_THETA_GRAD_CONV, CC_Z_CONV) [10**(-n)] 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

7  energies 
8   gradients 

OPTIONS 
 n  10**(-n) convergence criterion 

 
CC_DIIS 

Specify the version of Pulay's Direct Inversion of the Iterative Subspace (DIIS) 
convergence accelerator to be used in the coupled cluster code. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 

OPTIONS: 
0   Activates procedure 2 initially, and procedure 1 when 

gradients are smaller than DIIS12_SWITCH.  
1   Uses error vectors defined as differences between parameter 

vectors from successive iterations.  Most efficient near 
convergence.  

2   Error vectors are defined as gradients scaled by square root 
of the approximate diagonal Hessian.  Most efficient far 
from convergence. 

RECOMMENDATION 
DIIS1 can be more stable.  If DIIS problems are encountered in the early 
stages of a calculation (when gradients are large) try DIIS1. 
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CC_DIIS_SIZE 
Specifies the maximum size of the DIIS space 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

7 
RECOMMENDATION 

Larger values involve larger amounts of disk storage. 
 
CC_DIIS_START 

Iteration number when DIIS is turned on.  Set to a large number to disable DIIS. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 

3 
RECOMMENDATION 

Occasionally DIIS can cause optimized orbital coupled cluster calculations 
to diverge through large orbital changes.  If this is seen, DIIS should be 
disabled. 

 
CC_DIIS12_SWITCH 

When to switch from DIIS2 to DIIS1 procedure, or when DIIS2 procedure is 
required to generate DIIS guesses less frequently.  Total value of DIIS error 
vector must be less than 10**(-n), where n is the value of this option. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

5 
 
CC_DIIS_MIN_OVERLAP 

The DIIS procedure will be halted when the square root of smallest element of the 
error overlap matrix is less than 10**(-n), where n is the value of this option.  
Small values of the B matrix mean it will become near-singular, making the DIIS 
equations difficult to solve. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

11 
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CC_DIIS_MAX_OVERLAP 
DIIS extrapolations will not begin until square root of the maximum element of the 
error overlap matrix drops below this value. 

 VARIABLE: 
  DOUBLE  Integer code abcde is mapped to abc * 10**(-de) 
 DEFAULT: 

1.0 
 
CC_DIIS_FREQ 

DIIS extrapolation will be attempted every n iterations.  However, DIIS2 will be 
attempted every iteration while total error vector exceeds CC_DIIS12_SWITCH. 
DIIS1 cannot generate guesses more frequently than every 2 iterations.  

 VARIABLE: 
  INTEGER 
 DEFAULT: 

2 
 
CC_DOV_THRESH 

Specifies minimum allowed values for the coupled cluster energy denominators.  
Smaller values are replaced by this constant during early iterations only, so the final 
results are unaffected, but initial convergence is improved when the guess is poor. 

 VARIABLE: 
  DOUBLE  Integer code abcde is mapped to abc * 10**(-de) 
 DEFAULT: 

0.25 
RECOMMENDATION: 
 Increase to 0.5 or 0.75 for nonconvergent coupled cluster calculations. 

 
CC_E_CONV 

Convergence desired on the change in total energy, 10**(-n), between iterations. 
VARIABLE: 

INTEGER 
DEFAULT: 

10 
OPTIONS 

  n  10**(-n) convergence criterion 
 
CC_HESS_THRESH 

Minimum allowed value for the orbital Hessian. Smaller values are replaced by this 
constant.  

 VARIABLE: 
  DOUBLE  Integer code abcde is mapped to abc * 10**(-de) 
 DEFAULT: 

0.01 
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CC_INCL_CORE_CORR 
Whether to include the correlation contribution from frozen core orbitals in 
noniterative (2) corrections, such as OD(2) and CCSD(2).  

 VARIABLE: 
  LOGICAL 
 DEFAULT: 

TRUE 
 OPTIONS: 
  TRUE/FALSE 
 
CC_ITERATE_OV 

In active space calculations, use a "mixed" iteration procedure if the value is 
greater than 0.  Then, if the RMS orbital gradient is larger than the value of  
CC_THETA_GRAD_THRESH, micro-iterations will be performed to converge the 
occupied-virtual mixing angles for the current active space.  The maximum number 
of such iterations is given by this option.  

 VARIABLE: 
  INTEGER 
 DEFAULT: 

0 (no “mixed” iterations) 
OPTIONS: 
 n  up to n occupied-virtual iterations per overall cycle  
RECOMMENDATION: 
 Can be useful for nonconvergent active space calculations. 

 
CC_MAXITER 

Maximum number of iterations to optimize the coupled cluster energy.  
 VARIABLE: 
  INTEGER 
 DEFAULT: 

200 
OPTIONS: 
 n  up to n iterations to achieve convergence  
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CC_MP2NO_GUESS 
Will guess orbitals be natural orbitals of the MP1 wavefunction? Alternatively, it is 
possible to use an effective one-particle density matrix to define the natural 
orbitals.  
VARIABLE: 

LOGICAL 
DEFAULT: 

FALSE 
OPTIONS: 

TRUE  Use natural orbitals from an MP2 one-particle density 
matrix (see CC_MP2NO_GRAD). 

FALSE   Use current molecular orbitals from SCF 
 
CC_MP2NO_GRAD 

If CC_MP2NO_GUESS is TRUE, what kind of one-particle density matrix is used 
to make the guess orbitals?  
VARIABLE: 

  LOGICAL 
 DEFAULT: 

FALSE 
OPTIONS: 

TRUE   1 PDM from MP2 gradient theory. 
FALSE  1 PDM expanded to 2nd order in perturbation theory. 

RECOMMENDATION: 
The two definitions give generally similar performance. 

 
CC_ORBS_PER_BLOCK 

Specifies target (and maximum) size of blocks in orbital space. 
 VARIABLE: 
  INTEGER 
 DEFAULT: 

16 
OPTIONS 
 n   Orbital block size of n orbitals 
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CC_PRECONV_FZ 
In active space methods, whether to preconverge other wavefunction variables for 
fixed initial guess of active space. 

 VARIABLE: 
INTEGER 

DEFAULT: 
0   (FALSE) 

OPTIONS 
0   No pre-iterations before active space optimization begins. 
n   Maximum number of pre-iterations via this procedure.  
 

CC_PRECONV_T2Z 
Whether to pre-converge the cluster amplitudes before beginning orbital 
optimization in optimized orbital cluster methods.  
VARIABLE: 

INTEGER 
DEFAULT: 

0   (FALSE) 
10   If CC_RESTART, CC_RESTART_NO_SCF or 

CC_MP2NO_GUESS are TRUE 
OPTIONS: 

0   No pre-convergence before orbital optimization. 
n   Up to n iterations in this pre-convergence procedure.  

RECOMMENDATION 
Experiment with this option in cases of convergence failure. 

 
CC_PRECONV_T2Z_EACH 

Whether to pre-converge the cluster amplitudes before each change of the orbitals 
in optimized orbital coupled cluster methods.  The maximum number of iterations 
in this pre-convergence procedure is given by the value of this parameter.  

 VARIABLE: 
  INTEGER 
 DEFAULT: 

0   (FALSE) 
OPTIONS: 

0   No pre-convergence before orbital optimization. 
n   Up to n iterations in this pre-convergence procedure.  

RECOMMENDATION: 
A very slow last resort option for jobs that do not converge. 
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CC_QCCD_THETA_SWITCH 
QCCD calculations switch from OD to QCCD when the rotation gradient is below 
this threshold [10**(-n)] 

 VARIABLE: 
  INTEGER 

DEFAULT: 
2  10**(-2) switchover 

OPTIONS 
 n  10**(-n) switchover 

 
CC_RESET_THETA 

The reference MO coefficient matrix is reset every n iterations to help overcome 
problems associated with the theta metric as theta becomes large.  

 VARIABLE: 
  INTEGER 
 DEFAULT: 

15 
OPTIONS: 

n   n iterations between resetting orbital rotations to zero. 
 
CC_RESTART 

Allows an optimized orbital coupled cluster calculation to begin with an initial 
guess for the orbital transformation matrix U other than the unit vector. The 
scratch file from a previous run must be available for the U matrix to be read 
successfully.  

 VARIABLE: 
  LOGICAL 
 DEFAULT: 

FALSE 
OPTIONS: 

FALSE  use unit initial guess. 
TRUE  activates CC_PRECONV_T2Z, CC_CANONIZE, and turns 

off CC_MP2NO_GUESS  
RECOMMENDATION: 

Useful for restarting a job that did not converge, if files were saved. 
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CC_RESTART_NO_SCF 
Should an optimized orbital coupled cluster calculation begin with optimized 
orbitals from a previous calculation? When TRUE, molecular orbitals are initially 
orthogonalized, and CC_PRECONV_T2Z and CC_CANONIZE are set to TRUE 
while  other guess options are set to FALSE.  

 VARIABLE: 
  LOGICAL 
 DEFAULT: 

FALSE 
OPTIONS: 

TRUE/FALSE 
 
CC_T_CONV 

Convergence criterion on the RMS difference between successive sets of coupled 
cluster doubles amplitudes [10**(-n)] 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

8  energies 
10   gradients 

OPTIONS 
 n  10**(-n) convergence criterion 

 
CC_THETA_CONV 

Convergence criterion on the RMS difference between successive sets of orbital 
rotation angles [10**(-n)]. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

5   energies 
6   gradients 

OPTIONS: 
 n  10**(-n) convergence criterion 

 
CC_THETA_GRAD_CONV 

Convergence desired on the RMS gradient of the energy with respect to orbital 
rotation angles [10**(-n)].  

 VARIABLE: 
  INTEGER 
 DEFAULT: 

7   energies 
8   gradients 

OPTIONS 
 n  10**(-n) convergence criterion 
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CC_THETA_GRAD_THRESH 
RMS orbital gradient threshold [10**(-n)] above which “mixed iterations” are 
performed in active space calculations if CC_ITERATE_OV is TRUE. 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

2 
OPTIONS: 

n   10**(-n) threshold  
RECOMMENDATION 

Can be made smaller if convergence difficulties are encountered. 
 
CC_THETA_STEPSIZE 

Scale factor for the orbital rotation step size. The optimal rotation steps should be 
approximately equal to the gradient vector.  
VARIABLE: 

DOUBLE Integer code abcde is mapped to abc * 10** (-de) 

DEFAULT: 
1.0  If the initial step is smaller than 0.5, the program will 

increase step when gradients are smaller than the value of  
THETA_GRAD_THRESH, up to a limit of 0.5.  

RECOMMENDATION: 
Try a smaller value in cases of poor convergence and very large orbital 
gradients.  For example, a value of 01000 translates to 0.1. 

 
CC_TMPBUFFSIZE 

Maximum size, in MB, of additional buffers for temporary arrays used to work 
with individual blocks or matrices. Should not be smaller than size of the largest 
possible block.  The default is 16 MB.  

 VARIABLE: 
  INTEGER 
 DEFAULT: 

16 (MB) 
OPTIONS 

n (MB) 
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CC_Z_CONV 
Convergence criterion on the RMS difference between successive doubles Z-
vector amplitudes [10**(-n)] 

 VARIABLE: 
  INTEGER 
 DEFAULT: 

8   energies 
10   gradients 

OPTIONS 
 n  10**(-n) convergence criterion 

 
CD_ALGORITHM 
 Determines the algorithm for  integral transformations 
 VARIABLE: 
  STRING 
 DEFAULT: 
  Program determined 
 OPTIONS: 
  DIRECT  Uses fully direct algorithm 
  SEMI_DIRECT Uses disk-based sortless semi-direct algorithm 
 RECOMMENDATION: 
  Use the default 
 
CD_MAX_DISK 
 Sets the amount of disk space (in words) available for integral transforms 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  60,000,000 (60 MW) 
 OPTIONS: 
  User-defined 
 
N_FROZEN_CORE 
 Controls the number of frozen core orbitals in a post-Hartree-Fock calculation 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 No frozen core orbitals 
 OPTIONS: 
  FC Frozen core approximation (all core orbitals frozen) 
  n Freeze n core orbitals 
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N_FROZEN_VIRTUAL 
 Controls the number of frozen virtual orbitals in a post-Hartree-Fock calculation 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 No frozen virtual orbitals 
 OPTIONS: 
  n Freeze n virtual orbitals 
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C.7 EXCITED STATES 

See also JOBTYPE, BASIS, EXCHANGE and CORRELATION 
 
CC_DCONVERGENCE 

Convergence criterion for the RMS residuals of excited state vectors [10**(-n)].  
VARIABLE: 

INTEGER 
DEFAULT: 

5 
OPTIONS: 
 n  10**(-n) convergence criterion 
RECOMMENDATIONS: 

Should be consistent with CC_DTHRESHOLD.  
 
CC_DO_DISCONECTED 

Are disconnected terms included in the excited state coupled cluster equations? 
VARIABLE: 

LOGICAL 
DEFAULT: 

FALSE 
OPTIONS: 
 TRUE/FALSE 
RECOMMENDATIONS: 

Inclusion of disconnected terms has very small effects and is not necessary. 
 
CC_DTHRESHOLD 

Specifies threshold for including a new expansion vector in the iterative Davidson 
diagonalization. Their norm must be above this threshold.   
VARIABLE: 

DOUBLE Integer code abcde is mapped to abc * 10**(-de) 
DEFAULT: 

0.00001 
RECOMMENDATIONS: 

Should be consistent with CC_DCONVERGENCE. 
 
CC_DMAXITER 

Maximum number of iteration allowed for Davidson diagonalization procedure.  
VARIABLE: 

INTEGER 
DEFAULT: 

30 
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CC_HOW_DO_DOUBLES 
Distinguishes different implementations of active space coupled cluster excited 
state (VOD) calculations.  
VARIABLE: 

INTEGER 
DEFAULT: 

2 
OPTIONS: 

0  Double excitations for excited states are defined in the 
whole orbital space. This model is unbalanced and should be 
used for testing purposes only. 

1  Double excitations for the excited states are restricted to an 
active (valence) orbital space.  This approximates linear 
response CASCCF, with no orbital relaxation.   

2  Approximate treatment of orbital relaxation by including all 
internal and semi-internal excited state double excitations.  

 
CC_NGUESS_DOUBLES 

Specifies number of excited state guess vectors which are double excitations.  
VARIABLE: 

INTEGER 
DEFAULT: 

0 
OPTIONS: 
 n  Include n guess vectors that are double excitations 
RECOMMENDATIONS: 

This should be set to the expected number of doubly excited states (see 
also CC_PRECONV_DOUBLES), otherwise they may not be found. 

 
CC_NGUESS_SINGLES 

Specifies number of excited state guess vectors that are single excitations.  
VARIABLE: 

INTEGER 
DEFAULT: 

Equal to the number of excited states requested 
OPTIONS: 
 n  Include n guess vectors that are single excitations 
RECOMMENDATIONS: 

Should be greater or equal than the number of excited states requested. 
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CC_NHIGHSPIN 
Sets the number of coupled cluster high-spin excited state roots to find.  Works 
only for singlet ground state and triplet excited states.  The program will i ncrease 
this number if it suspects degeneracy, or change it to a smaller value, if it cannot 
generate enough guess vectors to start the calculations 

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0  Do not look for any coupled cluster excited states 
 OPTIONS: 
  n > 0  Find n CC excited states (after an OD ground state job) 
 
CC_NLOWSPIN 

Sets the number of coupled cluster excited state roots to find with the same 
multiplicity as the ground state. For a spin-unrestricted ground state, (e.g., doublet 
radicals), this is the total number of states of all multiplicities.  The program will 
increase this number if it suspects degeneracy, or change it to a smaller value, if it 
cannot generate enough guess vectors to start the calculations.   

 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0  Do not look for any coupled cluster excited states 
 OPTIONS: 
  n > 0  Find n CC excited states (after an OD ground state job) 
 
CC_NVEC_PER_ROOT 

Specifies maximum number of vectors per root in Davidson' diagonalization.  
VARIABLE: 

INTEGER 
DEFAULT: 

6 
OPTIONS: 

  n  Up to n vectors per root before the subspace is reset 
RECOMMENDATIONS: 

  Larger values increase storage but speed convergence. 
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CC_PRECONV_DOUBLES 
When TRUE, doubly-excited vectors are converged prior to a full excited states 
calculation.  
VARIABLE: 

LOGICAL 
DEFAULT: 

FALSE 
OPTIONS: 
 TRUE/FALSE 
RECOMMENDATIONS: 

Occasionally necessary to ensure a doubly excited state is found. 
 
CC_PRECONV_SINGLES 

When TRUE, singly-excited vectors are converged prior to a full excited states 
calculation.  
VARIABLE: 

LOGICAL 
DEFAULT: 

FALSE 
OPTIONS: 
 TRUE/FALSE 

 
CD_ALGORITHM 
 Determines the algorithm for  integral transformations 
 VARIABLE: 
  STRING 
 DEFAULT: 
  Program-determined 
 OPTIONS: 
  DIRECT  Uses fully direct algorithm 
  SEMI_DIRECT Uses disk-based sortless semi-direct algorithm 
 RECOMMENDATION: 
  Use the default 
 
CD_MAX_DISK 
 Sets the amount of disk space (in words) available for integral transforms 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  60,000,000 (60 MW) 
 OPTIONS: 
  User-defined 
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CIS_CONVERGENCE 
 CIS is considered converged when error is less than 10-CIS_CONVERGENCE 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  6 CIS convergence threshold ≡ 10-6 
 OPTIONS: 
  User-defined 
 
CIS_GUESS_DISK 
 Read the CIS guess from disk (previous calculation). 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Create a new guess 
 OPTIONS: 
  False   Create a new guess 
  True  Read the guess from disk 
 RECOMMENDATIONS: 
  Requires a guess from previous calculation 
 
CIS_GUESS_DISK_TYPE 
 Determines the type of guesses to be read from disk 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  None 
 OPTIONS: 
  0 Read triplets only 
  1 Read triplets and singlets 
  2 Read singlets only 
 RECOMMENDATIONS: 
  Must be specified if CIS_GUESS_DISK is TRUE 
 
CIS_N_ROOTS 
 Sets the number of CI-Singles (CIS) excited state roots to find 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Do not look for any excited states 
 OPTIONS: 
  n > 0 Looks for n CIS excited states 
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CIS_RELAXED_DENSITY 
 Use the relaxed CIS density for attachment/detachment density analysis 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Do not use the relaxed CIS density in analysis 
 OPTIONS: 
  False   Do not use the relaxed CIS density in analysis 
  True   Use the relaxed CIS density in analysis 
 
CIS_SINGLETS 
 Solve for singlet excited states in RCIS calculations (ignored for UCIS) 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  True  Solve for singlet states 
 OPTIONS: 
  True   Solve for singlet states 
  False   Do not solve for singlet states 
 
CIS_STATE_DERIV 
 Sets which state to determine CIS gradient for excited state optimizations 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Does not select any of the excited states 
 OPTIONS: 
  n Select the nth state 
 
CIS_TRIPLETS 
 Solve for triplet excited states in RCIS calculations (ignored for UCIS) 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  True  Solve for triplet states 
 OPTIONS: 
  True   Solve for triplet states 
  False   Do not solve for triplet states 
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MAX_CIS_CYCLES 
 Maximum number of CIS iterative cycles allowed 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  30 
 OPTIONS: 
  User-defined 
 RECOMMENDATIONS: 
  Default is usually sufficient 
 
N_FROZEN_CORE 
 Controls the number of frozen core orbitals 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 No frozen core orbitals 
 OPTIONS: 
  FC Frozen core approximation 
  n Freeze n core orbitals 
 
N_FROZEN_VIRTUAL 
 Controls the number of frozen virtual orbitals 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 No frozen virtual orbitals 
 OPTIONS: 
  n Freeze n virtual orbitals 
 
RPA 
 Do an RPA calculation in addition to a CIS calculation 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Do not do an RPA calculation 
 OPTIONS: 
  False   Do not do an RPA calculation 
  True  Do an RPA calculation 
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XCIS 
 Do an XCIS calculation in addition to a CIS calculation 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Do not do an XCIS calculation 
 OPTIONS: 
  False   Do not do an XCIS calculation 
  True  Do an XCIS calculation (requires ROHF ground state) 
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C.8 MOLECULAR GEOMETRY CRITICAL POINTS 

See also JOBTYPE, BASIS, EXCHANGE and CORRELATION 
 
GEOM_OPT_COORDS 
 Controls the type of optimization coordinates 
 VARIABLE 
  INTEGER  
 DEFAULT: 
  -1 Generate and optimize in internal coordinates, if this fails at any 

stage of the optimization, switch to Cartesian and continue 
 OPTIONS: 
  0 Optimize in Cartesian coordinates 
  1 Generate and optimize in internal coordinates, if this fails abort 
  -1 Generate and optimize in internal coordinates, if this fails at any 

stage of the optimization, switch to Cartesian and continue 
  2 Optimize in Z-matrix coordinates, if this fails abort 
  -2 Optimize in Z-matrix coordinates, if this fails during any stage of 

the optimization switch to Cartesians and continue 
 RECOMMENDATION: 
  Use the default; delocalized internals are more efficient 
 
GEOM_OPT_DMAX 
 Maximum allowed step size. Value supplied is multiplied by 10-3 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  300 = 0.3 
 OPTIONS: 
  n User-defined cutoff 
 RECOMMENDATION: 
  Use default 
 
GEOM_OPT_HESSIAN 
 Hessian status 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  DIAGONAL  Set up (default) diagonal Hessian 
 OPTIONS: 
  DIAGONAL  Set up (default) diagonal Hessian 
  READ   Have exact or initial Hessian. Use as is if Cartesian  

  or transform if internals 
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GEOM_OPT_LINEAR_ANGLE 
 Threshold for near linear bond angles (degrees) 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  165 degrees 
 OPTIONS: 
  n User-defined level 
 RECOMMENDATION: 
  Use default 
 
GEOM_OPT_MAX_CYCLES 
 Maximum number of optimisation cycles 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  20 
 OPTIONS: 
  User defined positive integer 
 RECOMMENDATION: 
  Use the default, increase for difficult cases 
 
GEOM_OPT_MAX_DIIS 
 Controls maximum size of subspace for GDIIS 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Do not use GDIIS 
 OPTIONS: 
  0 Do not use GDIIS 
  -1 Default size = min(NDEG, NATOMS, 4) NDEG = number of 

molecular degrees of freedom 
  n Size specified by user 
 RECOMMENDATION: 
  Use default or do not set n too large 
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GEOM_OPT_MODE 
 Determines Hessian mode followed during TS search 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Mode following off 
 OPTIONS: 
  0 Mode following off 
  n Maximise along mode n 
 RECOMMENDATION: 
  Use default 
 
GEOM_OPT_TOL_DISPLACEMENT 
 Convergence on maximum atomic displacement 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1200  ≡ 1200 x 10-6 tolerance on maximum atomic displacement 
 OPTIONS: 
  Integer value (tolerance = value x 10-6) 
 RECOMMENDATION: 
   Use the default. To converge GEOM_OPT_TOL_GRADIENT and 

one of GEOM_OPT_TOL_DISPLACEMENT and 
GEOM_OPT_TOL_ENERGY must be satisfied 

 
GEOM_OPT_TOL_ENERGY 
 Convergence on energy change of successive optimisation cycles 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  100  ≡ 100 x 10-8 tolerance on maximum gradient component 
 OPTIONS: 
  Integer value (tolerance = value x 10-8) 
 RECOMMENDATION: 
   Use the default. To converge GEOM_OPT_TOL_GRADIENT and 

one of GEOM_OPT_TOL_DISPLACEMENT and 
GEOM_OPT_TOL_ENERGY must be satisfied 
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GEOM_OPT_TOL_GRADIENT 
 Convergence on maximum gradient component 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  300  ≡ 300 x 10-6 tolerance on maximum gradient component 
 OPTIONS: 
  Integer value (tolerance = value x 10-6) 
 RECOMMENDATION: 
   Use the default. To converge GEOM_OPT_TOL_GRADIENT and 

one of GEOM_OPT_TOL_DISPLACEMENT and 
GEOM_OPT_TOL_ENERGY must be satisfied 

 
GEOM_OPT_SYMFLAG 
 Controls the use of symmetry in OPTIMIZE 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1 Make use of point group symmetry 
 OPTIONS: 
  1 Make use of point group symmetry 
  0 Do not make use of point group symmetry 
 RECOMMENDATION: 
  Use default 
 
GEOM_OPT_UPDATE 
 Controls the Hessian update algorithm 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  -1 Use the default update algorithm 
 OPTIONS: 
  -1 Use the default update algorithm 
  0 Do not update the Hessian (not recommended) 
  1 Murtagh-Sargent update 
  2 Powell update 
  3 Powell-Murtagh-Sargent update (TS default) 
  4 BFGS update (OPT default) 
  5 BFGS with safeguards to ensure retention of positive definiteness 

(GDISS default) 
 RECOMMENDATION: 
  Use default 
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C.9 MOLECULAR PROPERTIES AND ANALYSIS 

CHEMSOL  
Controls the use of ChemSol in Q-Chem 
VARIABLE: 

  INTEGER 
DEFAULT: 

  0  Do not use ChemSol 
OPTIONS: 

  1  Perform a ChemSol calculation 
 
CHEMSOL_EFIELD 

Determines how the solute charge distribution is approximated in evaluating the 
electrostatic field of the solute. 
VARIABLE: 

  INTEGER 
DEFAULT: 

  1  Exact solute charge distribution is used. 
OPTION: 

0 Solute charge distribution is approximated by Mulliken 
atomic charges. This is a faster, but less rigorous 
procedure. 

 
CHEMSOL_NN 

Sets the number of grids used to calculate the average hydration free energy. 
VARIABLE: 

  INTEGER 
DEFAULT: 

  5  ∆Ghydr will be averaged over 5 different grids 
OPTIONS: 

  n  number of different grids (Max = 20). 
 
DORAMAN 
 Controls calculation of Raman intensities. Requires JOBTYPE to be set to FREQ 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE Do not calculate Raman intensities 
 OPTIONS: 
  FALSE Do not calculate Raman intensities 
  TRUE  Do calculate Raman intensities 
 



C-42 Appendix C: $rem Variable Reference 

IGDESP 
Controls evaluation of the electrostatic potential on a grid of points.  If enabled, 
the output is in an ACSII file, plot.esp, in the format x,y,z,esp for each point. 
VARIABLE: 

  INTEGER 
DEFAULT: 

  none  no electrostatic potential evaluation 
OPTIONS: 

  −1  read grid input via the $plots section of the input deck 
  +n  read n grid points from the ACSII file ESPGrid 
 
INTRACULE 

Controls whether intracule properties are calculated (see also $intracule) 
VARIABLE: 

  LOGICAL 
DEFAULT: 

  FALSE No intracule properties  
OPTIONS: 

  TRUE  Evaluate intracule properties 
 
MULTIPOLE_ORDER 
 Determines highest order to of multipole moments to print if wave function 

analysis requested 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  4 
 OPTIONS: 
  n  Calculate moments to nth order 
 
NBO 
 Controls the use of the NBO package 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE Do not invoke the NBO package 
 OPTIONS: 
  FALSE Do not invoke the NBO package 
  TRUE  Do invoke the NBO package 
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POP_MULLIKEN 
 Controls running of Mulliken population analysis 
 VARIABLE: 
  LOGICAL/INTEGER 
 DEFAULT: 
  TRUE (1) Calculate Mulliken population 
 OPTIONS: 
  FALSE (0) Do not calculate Mulliken Population 
  TRUE (1) Calculate Mulliken population 
  2  Also calculate shell populations for each occupied orbital. 
 RECOMMENDATIONS: 
  TRUE.  Trivial additional calculation 
 
READ_VDW 

Controls the input of user-defined atomic radii for ChemSol calculation 
VARIABLE: 

  LOGICAL 
DEFAULT: 

  FALSE Use default ChemSol parameters  
OPTIONS: 

  TRUE  Read from the $van_der_waals section of the input file 
 
SOLUTE_RADIUS 
 Sets the Onsager solvent model cavity radius 
 VARIABLE: 
  INTEGER a0 = SOLUTE_RADIUS/10000 
 DEFAULT: 
  No default 
 OPTIONS: 
  User-defined 
 RECOMMENDATION: 
  Use equation (8.1) 
 
SOLVENT_DIELECTRIC 
 Sets the dielectric constant of the Onsager solvent continuum 
 VARIABLE: 
  INTEGER ε = SOLVENT_DIELECTRIC/10000 
 DEFAULT: 
  No default 
 OPTIONS: 
  User-defined 
 RECOMMENDATION: 
  As per required solvent 
 
STEWART 
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Controls whether a Stewart atom analysis is performed (see also $stewart and 
$stewart_auxbasis) 
VARIABLE: 

  LOGICAL 
DEFAULT: 

  FALSE No Stewart analysis  
OPTIONS: 

  TRUE  Perform Stewart analysis 
 
SYMMETRY_DECOMPOSITION 
 Determines symmetry decompositions to calculate 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1  Calculate MO eigenvalues and symmetry (if available) 
 OPTIONS: 
  0  No symmetry decomposition 
  1  Calculate MO eigenvalues and symmetry (if available) 
  2 Perform symmetry decomposition of kinetic energy and 

nuclear attraction matrices 
 
WAVEFUNCTION_ANALYSIS 
 Controls the running of the default wave function analysis 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  TRUE  Perform default wave function analysis 
 OPTIONS: 
  TRUE  Perform default wave function analysis. 
  FALSE Do not perform default wave function analysis 
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C.10 PRINTING 

CC_PRINT 
 Controls the output from post-MP2 coupled cluster module of Q-Chem 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1  
 OPTIONS: 
  0 

�
 7  Higher values can lead to deforestation…  

 
CHEMSOL_PRINT 

Controls printing in the ChemSol part of the Q-Chem output file. 
VARIABLE: 

  INTEGER 
DEFAULT: 

  0  Limited printout 
OPTIONS: 
 1  Full printout. 

 
DIIS_PRINT 
 Controls the output from DIIS SCF optimization 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0  
 OPTIONS: 
  0  
  1  Chosen method and DIIS coeff icients & solutions 
  2  Level 1 plus changes in multipole moments 
  3  Level 2 plus Multipole moments 
  4  Level 3 plus extrapolated Fock matrices 
 
MOM_PRINT 
 Switches printing on within the MOM procedure 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  FALSE 
 OPTIONS: 
  FALSE  Printing is turned off  
  TRUE   Printing is turned on 
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GEOM_OPT_PRINT 
 Amount of OPTIMIZE print output 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  3 Error messages, summary, warning, standard information and 

gradient print out 
 OPTIONS: 
  0 Error messages only 
  1 Level 0 plus summary and warning print out 
  2 Level 1 plus standard information 
  3 Level 2 plus gradient print out 
  4 Level 3 plus hessian print out 
  5 Level 4 plus iterative print out 
  6 Level 5 plus internal generation print out 
  7 Debug print out 
 RECOMMENDATION: 
  Use the default 
 
PRINT_GENERAL_BASIS 
 Controls print out of built in basis sets in input format 
 VARIABLE: 
  LOGICAL 
 DEFAULT: 
  False  Do not print out standard basis set information 
 OPTIONS: 
  TRUE  Print out standard basis set information 
  FALSE Do not print out standard basis set information 
 RECOMMENDATIONS: 
  Useful for modification of standard basis sets 
 
PRINT_ORBITALS 

Prints orbital coefficients with atom labels in analysis part of output. 
VARIABLE: 
 INTEGER/LOGICAL 
DEFAULT: 
 FALSE 
OPTIONS: 
 TRUE   Prints occupied orbitals plus 5 virtuals. 
 NVIRT  Number of virtuals to print. 
RECOMMENDATION: 
 Use TRUE unless more virtuals are desired. 
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SCF_FINAL_PRINT 
 Controls level of output from SCF procedure to Q-Chem output file at the end of 

the SCF 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 No extra print out 
 OPTIONS: 
  0 No extra print out 
  1 Orbital Energies only 
  2 Level 1 plus MOs 
  3 Level 2 plus Fock and density matrices 
 
SCF_GUESS_PRINT 
 Controls printing of guess MOs, Fock and density matrices 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Do not print guesses 
 OPTIONS: 
  0 Do not print guesses 
 SAD 
  1 Atomic density matrics and molecular matrix 
  2 Level 1 plus density matrices 
 CORE and GWH 
  1 No extra output 
  2 Level 1 plus Fock and density matrices and, MO coefficients and 

eigenvalues 
 READ 
  1 No extra output 
  2 Level 1 plus density matrices, MO coefficients and eigenvalues 
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SCF_PRINT 
 Controls level of output from SCF procedure to Q-Chem output file 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  0 Minimal, concise, useful and necessary output 
 OPTIONS: 
  0 Minimal, concise, useful and necessary output 
  1 Level 0 plus component breakdown of SCF electronic energy 
  2 Level 1 plus density, Fock an MO matrices on each cycle 
  3 Level 2 plus two-electron Fock matrix components (Coulomb, HF 

exchange and DFT exchange-correlation matrices) on each cycle 
 RECOMMENDATION: 
  Proceed with care; can result in extremely large output files at level 2 or 

higher 
 
VIBMAN_PRINT 
 Controls level of extra print out for vibrational analysis 
 VARIABLE: 
  INTEGER 
 DEFAULT: 
  1 Standard full information print out 
 OPTIONS: 
  1 Standard full information print out 
  3 Level 1 plus vibrational frequencies in atomic units 
  4 Level 3 plus mass weighted Hessian matrix, projected mass-

weighted Hessian matrix 
  6 Level 4 plus vectors for translations and rotations, projection 

matrix 
 RECOMMENDATION: 
  Use default 
 


